Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis

Abstract

Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bernstein BE et al (2010) The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 28:1045–1048. doi:10.1038/nbt1010-1045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Byers PH, Pyott SM (2012) Recessively inherited forms of osteogenesis imperfecta. Annu Rev Genet 46:475–497. doi:10.1146/annurev-genet-110711-155608

    CAS  Article  PubMed  Google Scholar 

  3. Chesi A et al (2015) A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius. Hum Mol Genet 24:5053–5059. doi:10.1093/hmg/ddv210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Compston JE et al (2014) Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). J Bone Miner Res 29:487–493. doi:10.1002/jbmr.2051

    Article  PubMed  PubMed Central  Google Scholar 

  5. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.1038/nature11247

    Article  Google Scholar 

  6. Consortium GT (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660. doi:10.1126/science.1262110

    Article  Google Scholar 

  7. Coughlin C et al (2016) The genotypic spectrum of classic nonketotic hyperglycinemia Due to mutations in Gldc and Amt molecular genetics and metabolism, vol 117, pp 236–236

  8. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP ++. PLoS Comput Biol 6:e1001025. doi:10.1371/journal.pcbi.1001025

    Article  PubMed  PubMed Central  Google Scholar 

  9. Estrada K et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501. doi:10.1038/ng.2249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Fink HA, Kuskowski MA, Orwoll ES, Cauley JA, Ensrud KE, Osteoporotic Fractures in Men Study G (2005) Association between Parkinson’s disease and low bone density and falls in older men: the osteoporotic fractures in men study. J Am Geriatr Soc 53:1559–1564. doi:10.1111/j.1532-5415.2005.53464.x

    Article  PubMed  Google Scholar 

  11. Grant SF, Hakonarson H (2008) Microarray technology and applications in the arena of genome-wide association. Clin Chem 54:1116–1124. doi:10.1373/clinchem.2008.105395

    CAS  Article  PubMed  Google Scholar 

  12. Guo Y et al (2010) Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet 6:e1000806. doi:10.1371/journal.pgen.1000806

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guo Y et al (2016) Integrating epigenomic elements and GWASs identifies BDNF gene affecting bone mineral density and osteoporotic fracture ris. Sci Rep 6:30558. doi:10.1038/srep30558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Ham S, Roh TY (2014) A follow-up association study of genetic variants for bone mineral density in a Korean Population. Genom Inf 12:114–120. doi:10.5808/GI.2014.12.3.114

    Article  Google Scholar 

  15. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367. doi:10.1073/pnas.0903103106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Hofbauer LC, Brueck CC, Singh SK, Dobnig H (2007) Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22:1317–1328. doi:10.1359/jbmr.070510

    CAS  Article  PubMed  Google Scholar 

  17. Howie B, Marchini J, Stephens M (2011) Genotype imputation with thousands of genomes. G3 1:457–470. doi:10.1534/g3.111.001198

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ionita-Laza I, McCallum K, Xu B, Buxbaum JD (2016) A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat Genet 48:214–220. doi:10.1038/ng.3477

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Jing H et al (2016) Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adipocyte and enhances bone formation during osteoporosis. Mol Ther 24:217–229. doi:10.1038/mt.2015.152

    CAS  Article  PubMed  Google Scholar 

  20. Khan TS, Fraser LA (2015) Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporosis 2015:174186. doi:10.1155/2015/174186

    Article  Google Scholar 

  21. Kim MH, Kim HM, Jeong HJ (2016) Estrogen-like osteoprotective effects of glycine in in vitro and in vivo models of menopause. Amino Acids 48:791–800. doi:10.1007/s00726-015-2127-6

    CAS  Article  PubMed  Google Scholar 

  22. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315. doi:10.1038/ng.2892

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kotake S et al (2001) Activated human T cells directly induce osteoclastogenesis from human monocytes - Possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 44:1003–1012. doi:10.1002/1529-0131(200105)44:5<1003 (:Aid-Anr179>3.0.Co;2-#)

    CAS  Article  PubMed  Google Scholar 

  24. Kung AW et al (2010) Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet 86:229–239. doi:10.1016/j.ajhg.2009.12.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16:321–332. doi:10.1038/nrg3920

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Manilay JO, Zouali M (2014) Tight relationships between B lymphocytes and the skeletal system. Trends Mol Med 20:405–412. doi:10.1016/j.molmed.2014.03.003

    CAS  Article  PubMed  Google Scholar 

  27. McClellan J, King MC (2010) Genetic heterogeneity in human disease. Cell 141:210–217. doi:10.1016/j.cell.2010.03.032

    CAS  Article  PubMed  Google Scholar 

  28. McDonald AC, Schuijers JA, Gundlach AL, Grills BL (2007) Galanin treatment offsets the inhibition of bone formation and downregulates the increase in mouse calvarial expression of TNFalpha and GalR2 mRNA induced by chronic daily injections of an injurious vehicle. Bone 40:895–903. doi:10.1016/j.bone.2006.10.018

    CAS  Article  PubMed  Google Scholar 

  29. Mitchell SA et al (2010) Determinants of functional performance in long-term survivors of allogeneic hematopoietic stem cell transplantation with chronic graft-versus-host disease (cGVHD). Bone Marrow Transpl 45:762–769. doi:10.1038/bmt.2009.238

    CAS  Article  Google Scholar 

  30. Musunuru K et al (2010) From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466:714–719. doi:10.1038/nature09266

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31:629–662. doi:10.1210/er.2009-0044

    CAS  Article  PubMed  Google Scholar 

  34. Ramos EM et al (2014) Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Europ J Hum Genet EJHG 22:144–147. doi:10.1038/ejhg.2013.96

    CAS  Article  PubMed  Google Scholar 

  35. Reinholt FP, Hultenby K, Oldberg A, Heinegard D (1990) Osteopontin—a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA 87:4473–4475. doi:10.1073/pnas.87.12.4473

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Ritchie GRS, Dunham I, Zeggini E, Flicek P (2014) Functional annotation of noncoding sequence variants. Nat Methods 11:294–U351. doi:10.1038/nmeth.2832

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Samuel L (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210–229

    Article  Google Scholar 

  38. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR, Study of Osteoporotic Fractures Research Group (2001) A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Am J Clin Nutr 73:118–122

    CAS  PubMed  Google Scholar 

  39. Slatkin M (2009) Epigenetic inheritance and the missing heritability problem. Genetics 182:845–850. doi:10.1534/genetics.109.102798

    Article  PubMed  PubMed Central  Google Scholar 

  40. Styrkarsdottir U et al (2016) Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nat Commun 7:10129. doi:10.1038/ncomms10129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Tat SK, Padrines M, Theoleyre S, Couillaud-Battaglia S, Heymann D, Redini F, Fortun Y (2006) OPG/membranous-RANKL complex is internalized via the clathrin pathway before a lysosomal and a proteasomal degradation. Bone 39:706–715. doi:10.1016/j.bone.2006.03.016

    CAS  Article  PubMed  Google Scholar 

  42. Timpson NJ et al (2009) Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum Mol Genet 18:1510–1517. doi:10.1093/hmg/ddp052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Udagawa N et al (1990) Origin of osteoclasts—mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264. doi:10.1073/pnas.87.18.7260

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Jin Q, Lee JE, Su IH, Ge K (2010) Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA 107:7317–7322. doi:10.1073/pnas.1000031107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Welter D et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–1006. doi:10.1093/nar/gkt1229

    CAS  Article  PubMed  Google Scholar 

  46. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191. doi:10.1093/bioinformatics/btq340

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Xiong DH et al (2009) Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 84:388–398. doi:10.1016/j.ajhg.2009.01.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:1556–1566. doi:10.1038/nprot.2015.105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Yang TL et al (2008) Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am J Hum Genet 83:663–674. doi:10.1016/j.ajhg.2008.10.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Yang J et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569. doi:10.1038/ng.608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Yang TL et al (2012) Genetic variants in the SOX6 gene are associated with bone mineral density in both Caucasian and Chinese populations. Osteoporos Int 23:781–787. doi:10.1007/s00198-011-1626-x

    CAS  Article  PubMed  Google Scholar 

  52. Zheng HF et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526:112–117. doi:10.1038/nature14878

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 12:931–934. doi:10.1038/nmeth.3547

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31471188, 81573241, and 31511140285); China Postdoctoral Science Foundation (2016M602797, 2016T90902); Natural Science Basic Research Program Shaanxi Province (2016JQ3026); and the Fundamental Research Funds for the Central Universities. The study was also funded by the Grants from National Institutes of Health (P50AR055081, R01AG026564, R01AR050496, and R01AR057049).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tie-Lin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

For this type of study formal consent is not required. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1375 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Guo, Y., Dong, S. et al. Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis. Hum Genet 136, 963–974 (2017). https://doi.org/10.1007/s00439-017-1825-4

Download citation