Skip to main content

Advertisement

Log in

RNA processing as an alternative route to attack glioblastoma

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Genomic analyses have become an important tool to identify new avenues for therapy. This is especially true for cancer types with extremely poor outcomes, since our lack of effective therapies offers no tangible clinical starting point to build upon. The highly malignant brain tumor glioblastoma (GBM) exemplifies such a refractory cancer, with only 15 month average patient survival. Analyses of several hundred GBM samples compiled by the TCGA (The Cancer Genome Atlas) have produced an extensive transcriptomic map, identified prevalent chromosomal alterations, and defined important driver mutations. Unfortunately, clinical trials based on these results have not yet delivered an improvement on outcome. It is, therefore, necessary to characterize other regulatory routes known for playing a role in tumor relapse and response to treatment. Alternative splicing affects more than 90% of the human coding genes and it is an important source for transcript variation and gene regulation. Mutations and alterations in splicing factors are highly prevalent in multiple cancers, demonstrating the potential for splicing to act as a tumor driver. As a result, numerous genes are expressed as cancer-specific splicing isoforms that are functionally distinct from the canonical isoforms found in normal tissue. These include genes that regulate cancer-critical pathways such as apoptosis, DNA repair, cell proliferation, and migration. Splicing defects can even induce genomic instability, a common characteristic of cancer, and a driver of tumor evolution. Importantly, components of the splicing machinery are targetable; multiple drugs can inhibit splicing factors or promote changes in splicing which could be exploited to begin improving clinical outcomes. Here, we review the current literature and present a case for exploring RNA processing as therapeutic route for the treatment of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelmohsen K, Gorospe M (2010) Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA 1(2):214–229. doi:10.1002/wrna.4

    Article  CAS  PubMed  Google Scholar 

  • ABTA (2016) American Brain Tumor Association. www.abta.org. Accessed 15 Nov 2016

  • Adler AS, McCleland ML, Yee S, Yaylaoglu M, Hussain S, Cosino E, Quinones G, Modrusan Z, Seshagiri S, Torres E, Chopra VS, Haley B, Zhang Z, Blackwood EM, Singh M, Junttila M, Stephan JP, Liu J, Pau G, Fearon ER, Jiang Z, Firestein R (2014) An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev 28(10):1068–1084. doi:10.1101/gad.237206.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, Tirode F, Constantinou A, Piperno-Neumann S, Roman-Roman S, Dutertre M, Stern MH (2016) Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun. doi:10.1038/ncomms10615 (Article Number 10615)

    PubMed  PubMed Central  Google Scholar 

  • Auboeuf D, Hönig A, Berget SM, O’Malley BW (2002) Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298(5592):416–419

    Article  CAS  PubMed  Google Scholar 

  • Babic I, Anderson ES, Tanaka K, Guo D, Masui K, Li B, Zhu S, Gu Y, Villa GR, Akhavan D, Nathanson D, Gini B, Mareninov S, Li R, Camacho CE, Kurdistani SK, Eskin A, Nelson SF, Yong WH, Cavenee WK, Cloughesy TF, Christofk HR, Black DL, Mischel PS (2013) EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab 17(6):1000–1008. doi:10.1016/j.cmet.2013.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao ZS, Zhang CB, Wang HJ, Yan W, Liu YW, Li MY, Zhang W (2013) Whole-genome mRNA expression profiling identifies functional and prognostic signatures in patients with mesenchymal glioblastoma multiforme. CNS Neurosci Ther 19(9):714–720. doi:10.1111/cns.12118

    Article  CAS  PubMed  Google Scholar 

  • Bi B, Li F, Guo J, Li C, Jing R, Lv X, Chen X, Wang F, Azadzoi KM, Wang L, Liu Y, Yang J (2017) Label -free quantitative proteomics unravels the importance of RNA processing in glioma malignancy. Neuroscience 351:84–95

    Article  CAS  PubMed  Google Scholar 

  • Bowman RL, Wang Q, Carro A, Verhaak RG, Squatrito M (2017) GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol 19(1):139–141. doi:10.1093/neuonc/now247 (Epub 9 Nov 2016)

    Article  PubMed  Google Scholar 

  • Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L, TCGA Research Network (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. doi:10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks AN, Choi PS, de Waal L, Sharifnia T, Imielinski M, Saksena G, Pedamallu CS, Sivachenko A, Rosenberg M, Chmielecki J, Lawrence MS, DeLuca DS, Getz G, Meyerson M (2014) A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One 9(1):e87361. doi:10.1371/journal.pone.0087361

    Article  PubMed  PubMed Central  Google Scholar 

  • Camacho-Vanegas O, Narla G, Teixeira MS, DiFeo A, Misra A, Singh G, Chan AM, Friedman SL, Feuerstein BG, Martignetti JA (2007) Functional inactivation of the KLF6 tumor suppressor gene by loss of heterozygosity and increased alternative splicing in glioblastoma. Int J Cancer 121(6):1390–1395

    Article  CAS  PubMed  Google Scholar 

  • Cazzola M, Rossi M, Malcovati L (2013) Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood 121(2):260–269. doi:10.1182/blood-2012-09-399725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung HC, Baggerly KA, Tsavachidis S, Bachinski LL, Neubauer VL, Nixon TJ, Aldape KD, Cote GJ, Krahe R (2008) Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays. BMC Genom 9:216. doi:10.1186/1471-2164-9-216

    Article  Google Scholar 

  • Chunduru S, Kawami H, Gullick R, Monacci WJ, Dougherty G, Cutler ML (2002) Identification of an alternatively spliced RNA for the Ras suppressor RSU-1 in human gliomas. J Neurooncol 60(3):201–211

    Article  PubMed  Google Scholar 

  • Correa BR, de Araujo PR, Qiao M, Burns SC, Chen C, Schlegel R, Agarwal S, Galante PA, Penalva LO (2016) Functional genomics analyses of RNA-binding proteins reveal the splicing regulator SNRPB as an oncogenic candidate in glioblastoma. Genome Biol 17(1):125. doi:10.1186/s13059-016-0990-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Cote GJ, Zhu W, Thomas A, Martin E, Murad F, Sharina IG (2012) Hydrogen peroxide alters splicing of soluble guanylyl cyclase and selectively modulates expression of splicing regulators in human cancer cells. Plos One 7(7):1–9

    Google Scholar 

  • Danan-Gotthold M, Golan-Gerstl R, Eisenberg E, Meir K, Karni R, Levanon EY (2015) Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res 43(10):5130–5144. doi:10.1093/nar/gkv210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dargahi D, Swayze RD, Yee L, Bergqvist PJ, Hedberg BJ, Heravi-Moussavi A, Dullaghan EM, Dercho R, An J, Babcook JS, Jones SJ (2014) A pan-cancer analysis of alternative splicing events reveals novel tumor-associated splice variants of matriptase. Cancer Inform 13:167–177. doi:10.4137/CIN.S19435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darman RC, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, Bailey SL, Bhavsar EB, Chan B, Colla S, Corson L, Feala J, Fekkes P, Ichikawa K, Keaney GF, Lee L, Kumar P, Kunii K, MacKenzie C, Matijevic M, Mizui Y, Myint K, Park ES, Puyang X, Selvaraj A, Thomas MP, Tsai J, Wang JY, Warmuth M, Yang H, Zhu P (2015) Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Reports 13(5):1033–1045

    Article  CAS  PubMed  Google Scholar 

  • Diesel B, Radermacher J, Bureik M, Bernhardt R, Seifert M, Reichrath J, Fischer U, Meese E (2005) Vitamin D(3) metabolism in human glioblastoma multiforme: functionality of CYP27B1 splice variants, metabolism of calcidiol, and effect of calcitriol. Clin Cancer Res 11(15):5370–5380

    Article  CAS  PubMed  Google Scholar 

  • DiFeo A, Martignetti JA, Narla G (2009) The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat 12(1–2):1–7. doi:10.1016/j.drup.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  • Dorman SN, Viner C, Rogan PK (2014) Splicing mutation analysis reveals previously unrecognized pathways in lymph node-invasive breast cancer. Sci Rep 4:7063. doi:10.1038/srep07063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskens FALM, Ramos FJ, Burger H, O’Brien JP, Piera A, Jonge MJA, Mizui Y, Wiemer EAC, Carreras MJ, Baselga J, Tabernero J (2013) Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19(22):6296–6304. doi:10.1158/1078-0432.CCR-13-0485

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Lagisetti C, Edwards CC, Webb TR, Potter PM (2011) Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol 6(6):582–589. doi:10.1021/cb100356k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrarese R, Harsh GR 4th, Yadav AK, Bug E, Maticzka D, Reichardt W, Dombrowski SM, Miller TE, Masilamani AP, Dai F, Kim H, Hadler M, Scholtens DM, Yu IL, Beck J, Srinivasasainagendra V, Costa F, Baxan N, Pfeifer D, von Elverfeldt D, Backofen R, Weyerbrock A, Duarte CW, He X, Prinz M, Chandler JP, Vogel H, Chakravarti A, Rich JN, Carro MS, Bredel M (2014) Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. J Clin Invest 124(7):2861–2876. doi:10.1172/JCI68836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippova N, Yang X, Wang Y, Gillespie GY, Langford C, King PH, Wheeler C, Nabors LB (2011) The RNA-binding protein HuR promotes glioma growth and treatment resistance. Mol Cancer Res 9(5):648–659. doi:10.1158/1541-7786.MCR-10-0325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Rovina D, Novielli C, Maffioli E, Tedeschi G, Magnani I, Larizza L (2015) Suggestive evidence on the involvement of polypyrimidine-tract binding protein in regulating alternative splicing of MAP/microtubule affinity-regulating kinase 4 in glioma. Cancer Lett 359(1):87–96. doi:10.1016/j.canlet.2014.12.049

    Article  CAS  PubMed  Google Scholar 

  • Galante PAF, Sandhu D, Abreu RS, Gradassi M, Slager N, Vogel C, Souza SJ, Penalva LOF (2009) A comprehensive in silico expression analysis of RNA binding proteins in normal and tumor tissue. RNA Biol 6(4):426–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Sacristán A, Fernández-Nestosa MJ, Hernández P, Schvartzman JB, Krimer DB (2005) Protein kinase clk/STY is differentially regulated during erythroleukemia cell differentiation: a bias toward the skipped splice variant characterizes postcommitment stages. Cell Res 15(7):495–503

    Article  PubMed  Google Scholar 

  • Golan-Gerstl R, Cohen M, Shilo A, Suh SS, Bakàcs A, Coppola L, Karni R (2011) Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res 71(13):4464–4472. doi:10.1158/0008-5472.CAN-10-4410

    Article  CAS  PubMed  Google Scholar 

  • Grammatikakis I, Abdelmohsen K, Gorospe M (2017) Posttranslational control of HuR function. Wiley Interdiscip Rev RNA. doi:10.1002/wrna.1372

    Google Scholar 

  • Haapasalo J, Hilvo M, Nordfors K, Haapasalo H, Parkkila S, Hyrskyluoto A, Rantala I, Waheed A, Sly WS, Pastorekova S, Pastorek J, Parkkila AK (2008) Neuro Oncol 10(2):131–138. doi:10.1215/15228517-2007-065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Pool M, Darcy KM, Lim SB, Auersperg N, Coon JS et al (2007) Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 26:4961–4968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Arslan AD, Ho T-T, Yuan C, Stampfer MR, Beck WT (2014) Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis 3(1):e84. doi:10.1038/oncsis.2013.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hishiki T, Kawamoto S, Morishita S, Okubo K (2000) BodyMap: a human and mouse gene expression database. Nucleic Acids Res 28(1):136–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, Faulkner N, Pilat MJ, O’Brien J, LoRusso P (2014) A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Investig New Drug 32(3):436–444

    Article  CAS  Google Scholar 

  • Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, Echeverria GV, Sun T, Kurley SJ, Tyagi S, Karlin KL, Dominguez-Vidaña R, Hartman JD, Renwick A, Scorsone K, Bernardi RJ, Skinner SO, Jain A, Orellana M, Lagisetti C, Golding I, Jung SY, Neilson JR, Zhang XH, Cooper TA, Webb TR, Neel BG, Shaw CA, Westbrook TF (2015) The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525(7569):384–388. doi:10.1038/nature14985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • Hubert CG, Bradley RK, Ding Y, Toledo CM, Herman J, Skutt-Kakaria K, Girard EJ, Davison J, Berndt J, Corrin P, Hardcastle J, Basom R, Delrow JJ, Webb T, Pollard SM, Lee J, Olson JM, Paddison PJ (2013) Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A. Genes Dev 27(9):1032–1045. doi:10.1101/gad.212548.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izaguirre DI, Zhu W, Hai T, Cheung HC, Krahe R, Cote GJ (2012) PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Mol Carcinog 51(11):895–906. doi:10.1002/mc.20859

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Bi W, Huang ES, Cote GJ (1999) Glioblastoma cell-specific expression of fibroblast growth factor receptor-1beta requires an intronic repressor of RNA splicing. Cancer Res 59(2):316–319

    CAS  PubMed  Google Scholar 

  • Jin W, McCutcheon IE, Fuller GN, Huang ES, Cote GJ (2000) Fibroblast growth factor receptor-1 alpha-exon exclusion and polypyrimidine tract-binding protein in glioblastoma multiforme tumors. Cancer Res 60(5):1221–1224

    CAS  PubMed  Google Scholar 

  • Kafasla P, Mickleburgh I, Llorian M, Coelho M, Gooding C, Cherny D, Joshi A, Kotik-Kogan O, Curry S, Eperon IC, Jackson RJ, Smith CW (2012) Defining the roles and interactions of PTB. Biochem Soc Trans 40(4):815–820. doi:10.1042/BST20120044

    Article  CAS  PubMed  Google Scholar 

  • Kai M (2016). Roles of RNA-binding proteins in DNA damage response. Int J Mol Sci 17(3):310. doi:10.3390/ijms17030310 (Review). Erratum in: Int J Mol Sci. doi:10.3390/ijms17040604

  • Kang YK, Schiff R, Ko L, Wang T, Tsai SY, Tsai MJ, O’Malley BW (2008) Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis. Cancer Res 68(19):7887–7896. doi:10.1158/0008-5472.CAN-08-1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kechavarzi B, Janga SC (2014) Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biol 15(1):R14. doi:10.1186/gb-2014-15-1-r14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127(2):265–275

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Koul D, Kim SH, Lucio-Eterovic AK, Freire PR, Yao J, Wang J, Almeida JS, Aldape K, Yung WK (2013) Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis. Neuro Oncol 15(7):829–839. doi:10.1093/neuonc/not024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreth S, Limbeck E, Hinske LC, Schütz SV, Thon N, Hoefig K, Egensperger R, Kreth FW (2013) In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol 125(5):671–681. doi:10.1007/s00401-013-1081-1

    Article  CAS  PubMed  Google Scholar 

  • Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M, Rajewsky N (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43(3):340–352. doi:10.1016/j.molcel.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  • Lefave CV, Squatrito M, Vorlova S, Rocco GL, Brennan CW, Holland EC, Pan YX, Cartegni L (2011) Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 30(19):4084–4097. doi:10.1038/emboj.2011.259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151(1):56–67. doi:10.1016/j.cell.2012.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo HW, Zhu H, Cao X, Aldrich A, Ali-Osman F (2009) A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res 69(17):6790–6798. doi:10.1158/0008-5472.CAN-09-0886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire SL, Leonidou A, Wai P, Marchiò C, Ng CKY, Sapino A, Salomon AV, Reis-Filho JS, Weigelt B, Natrajan RC (2015) SF3B1 mutations constitute a novel therapeutic target in breast cancer. J Pathol 235(4):571–580. doi:10.1002/path.4483

    Article  CAS  PubMed  Google Scholar 

  • Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu A, Li W, Wagner EJ (2014) CFIm25 links alternative polyadenylation to glioblastoma tumor suppression. Nature 510(7505):412–416. doi:10.1038/nature13261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr C, Bartel DP (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673. doi:10.1016/j.cell.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccutcheon IE, Hentschel SJ, Fuller GN, Jin W, Cote GJ (2004) Expression of the splicing regulator polypyrimidine tract-binding protein in normal and neoplastic brain. Neuro Oncol 6(1):9–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Mezey G, Treszl A, Schally AV, Block NL, Vízkeleti L, Juhász A, Klekner A, Nagy J, Balázs M, Halmos G, Bognár L (2014) Prognosis in human glioblastoma based on expression of ligand growth hormone-releasing hormone, pituitary-type growth hormone-releasing hormone receptor, its splicing variant receptors, EGF receptor and PTEN genes. J Cancer Res Clin Oncol 140(10):1641–1649. doi:10.1007/s00432-014-1716-1

    Article  CAS  PubMed  Google Scholar 

  • Mizui Y, Sakai T, Iwata M, Uenaka T, Okamoto K, Shimizu H, Yamori T, Yoshimatsu K, Asada M (2004) Pladienolides, new substances from culture of Streptomyces platensis Mer-11107III. In vitro and in vivo antitumor activities. J Antibiot 57(3):188–196

    Article  CAS  PubMed  Google Scholar 

  • Motaln H, Koren A, Gruden K, Ramšak Z, Schichor C, Lah T (2015) Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance. Oncotarget 6(38):40998–41017. doi:10.18632/oncotarget.5701

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M Jr, Tuschl T, Ohler U, Keene JD (2011) Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 43(3):327–339. doi:10.1016/j.molcel.2011.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padfield E, Ellis HP, Kurian KM (2015) Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front Oncol. doi:10.3389/fonc.2015.00005

    PubMed  PubMed Central  Google Scholar 

  • Patel VN, Gokulrangan G, Chowdhury SA, Chen Y, Sloan AE, Koyutürk M, Barnholtz-Sloan J, Chance MR (2013) Network signatures of survival in glioblastoma multiforme. PLoS Comput Biol 9(9):e1003237. doi:10.1371/journal.pcbi.1003237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeque A, Serão NV, Southey BR, Delfino KR, Rodriguez-Zas SL (2012) Identification and characterization of alternative exon usage linked glioblastoma multiforme survival. BMC Med Genom 5:59. doi:10.1186/1755-8794-5-59

    Article  CAS  Google Scholar 

  • Safaee M, Fakurnejad S, Bloch O, Clark AJ, Ivan ME, Sun MZ, Oh T, Phillips JJ, Parsa AT (2015) Proportional upregulation of CD97 isoforms in glioblastoma and glioblastoma-derived brain tumor initiating cells. PLoS One 10(2):e0111532. doi:10.1371/journal.pone.0111532

    Article  PubMed  PubMed Central  Google Scholar 

  • Seong MW, Ka SH, Park JH, Park JH, Yoo HM, Yang SW, Park JM, Park D, Lee ST, Seol JH, Chung CH (2015) Deleterious c-Cbl exon skipping contributes to human glioma. Neoplasia 17(6):518–524. doi:10.1016/j.neo.2015.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Zhang J, Zhang Z, Jiang H, Lou X, Huang B, Foltz G, Lan Q, Huang Q, Lin B (2013) Alternative polyadenylation in glioblastoma multiforme and changes in predicted RNA binding protein profiles. OMICS 17(3):136–149. doi:10.1089/omi.2012.0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiratsuchi G, Takaoka K, Ashikawa T, Hamada H, Kitagawa D (2015) RBM14 prevents assembly of centriolar protein complexes and maintains mitotic spindle integrity. EMBO J 34(1):97–114. doi:10.15252/embj.201488979

    Article  CAS  PubMed  Google Scholar 

  • Simon M, Köster G, Ludwig M, Mahlberg R, Rho S, Watzka M, Schramm J (2001) Alternative splicing of the p15 cdk inhibitor in glioblastoma multiforme. Acta Neuropathol 102(2):167–174

    CAS  PubMed  Google Scholar 

  • Simon M, Hosen I, Gousias K, Rachakonda S, Heidenreich B, Gessi M, Schramm J, Hemminki K, Waha A, Kumar R (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro Oncol 17(1):45–52. doi:10.1093/neuonc/nou158

    Article  CAS  PubMed  Google Scholar 

  • Simpson MT, Venkatesh I, Callif BL, Thiel LK, Coley DM, Winsor KN, Wang Z, Kramer AA, Lerch JK, Blackmore MG (2015) The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Mol Cell Neurosci 68:272–283. doi:10.1016/j.mcn.2015.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon DA, Kim JS, Jean W, Waldman T (2008) Conspirators in a capital crime: co-deletion of p18INK4c and p16INK4a/p14ARF/p15INK4b in glioblastoma multiforme. Cancer Res 68(21):8657–8660. doi:10.1158/0008-5472.CAN-08-2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins P, Marioni JC, Curtisc C, Watts C, Tavaré S (2012) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. PNAS 110(10):4009–4014. doi:10.1073/pnas.1219747110

    Article  Google Scholar 

  • Srikantan S, Gorospe M (2011) UneCLIPsing HuR nuclear function. Mol Cell 43(3):319–321. doi:10.1016/j.molcel.2011.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Yang Z, Xiong S, Zhang L, Blanchard KL, Peiper SC, Dynan WS, Tuan D, Ko L (2007) Gene amplification and associated loss of 5′ regulatory sequences of CoAA in human cancers. Oncogene 26(6):822–835

    Article  Google Scholar 

  • Tang JY, Chang HW, Chang JG (2013) Modulating roles of amiloride in irradiation-induced antiproliferative effects in glioblastoma multiforme cells involving Akt phosphorylation and the alternative splicing of apoptotic genes. DNA Cell Biol 32(9):504–510. doi:10.1089/dna.2013.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchirkov A, Sapin V, Marceau G, Chautard E, Narla G, Veronese L, Friedman S, Khalil T, Vago P, Kemeny JL, Verrelle P (2010) Increased expression of the oncogenic KLF6-SV1 transcript in human glioblastoma. Clin Chem Lab Med 48(8):1167–1170. doi:10.1515/CCLM.2010.219

    Article  CAS  PubMed  Google Scholar 

  • Teplyuk NM, Uhlmann EJ, Gabriely G, Volfovsky N, Wang Y, Teng J, Karmali P, Marcusson E, Peter M, Mohan A, Kraytsberg Y, Cialic R, Chiocca EA, Godlewski J, Tannous B, Krichevsky AM (2016) Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Mol Med 8(3):268–287. doi:10.15252/emmm.201505495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trombetta-Lima M, Winnischofer SM, Demasi MA, Astorino Filho R, Carreira AC, Wei B, de Assis-Ribas T, Konig MS, Bowman-Colin C, Oba-Shinjo SM, Marie SK, Stetler-Stevenson W, Sogayar MC (2015) Isolation and characterization of novel RECK tumor suppressor gene splice variants. Oncotarget 6(32):33120–33133. doi:10.18632/oncotarget.5305

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai YS, Dominguez D, Gomez SM, Wang Z (2015) Transcriptome-wide identification and study of cancer-specific splicing events across multiple tumors. Oncotarget 6(9):6825–6839

    Article  PubMed  PubMed Central  Google Scholar 

  • Uren PJ, Burns SC, Ruan J, Singh KK, Smith AD, Penalva LO (2011) Genomic analyses of the RNA-binding protein Hu antigen R (HuR) identify a complex network of target genes and novel characteristics of its binding sites. J Biol Chem 286(43):37063–37066. doi:10.1074/jbc.C111.266882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uren PJ, Bahrami-Samani E, de Araujo PR, Vogel C, Qiao M, Burns SC, Smith AD, Penalva LO (2016) High-throughput analyses of hnRNP H1 dissects its multi-functional aspect. RNA Biol 13(4):400–411. doi:10.1080/15476286.2015.1138030

    Article  PubMed  PubMed Central  Google Scholar 

  • Valles I, Pajares MJ, Segura V, Guruceaga E, Gomez-Roman J, Blanco D, Tamura A, Montuenga LM, Pio R (2012) Identification of novel deregulated RNA metabolism-related genes in non-small cell lung cancer. PLoS One 7(8):e42086. doi:10.1371/journal.pone.0042086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varghese RT, Liang Y, Guan T, Franck CT, Kelly DF, Sheng Z (2016) Survival kinase genes present prognostic significance in glioblastoma. Oncotarget 7(15):20140–20151. doi:10.18632/oncotarget.7917

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vo DT, Abdelmohsen K, Martindale JL, Qiao M, Tominaga K, Burton TL, Gelfond JA, Brenner AJ, Patel V, Trageser D, Scheffler B, Gorospe M, Penalva LO (2012) The oncogenic RNA-binding protein Musashi1 is regulated by HuR via mRNA translation and stability in glioblastoma cells. Mol Cancer Res 10(1):143–155. doi:10.1158/1541-7786.MCR-11-0208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinhold N, Jacobsen A, Schultz N, Sander C, Lee W (2014) Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet 46:1160–1165. doi:10.1038/ng.3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO) (2016) www.who.int. Accessed 15 Nov 2016

  • Xie Q, Mittal Berens ME (2014) Targeting adaptive glioblastoma: an overview of proliferation and invasion. Neuro Oncol 16(12):1575–1584. doi:10.1093/neuonc/nou147

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav AK, Vashishta V, Joshi N, Taneja P (2014) AR-A 014418 used against GSK3beta downregulates expression of hnRNPA1 and SF2/ASF splicing factors. J Oncol 2014:695325. doi:10.1155/2014/695325

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Li S, Lu G, Xue H, Kim DH, Zhu JJ, Liu Y (2016) Metformin treatment reduces temozolomide resistance of glioblastoma cells. Oncotarget. doi:10.18632/oncotarget.12859

    Google Scholar 

  • Yeo GW, Bjar R, Benegiamo G, Aigner S, Bengtson MH, Berkowitz ND, Bos TJ, Brown SA, Buac K, Calarco JA, Fan AC, Gosai SJ, Gracida X, Gregory BD, Hattori A, Huelga SC, Hundley HA, Ito T, Leung AKL, Licatalosi DD, Lovci MT, Massirer KB, Moore MJ, Norris AD, Nostrand ELV, Nussbacher JK, Panda S, Serebrov V, Silverman IM, Washburn MC (2016) RNA processing—disease and genome-wide probing. Springer, San Diego

    Google Scholar 

  • Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, Liau LM, Lai A, Nelson SF, Cloughesy TF, Tso CL (2015) Ribosomal proteins RPS11 and RPS20, two stress-response markers of glioblastoma stem cells, are novel predictors of poor prognosis in glioblastoma patients. PLoS One 10(10):e0141334. doi:10.1371/journal.pone.0141334

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Kim JH, Carver K, Su Y, Weremowicz S, Mulvey L, Yamamoto S, Brennan C, Mei S, Long H, Yao J, Polyak K (2015) CLK2 is an oncogenic kinase and splicing regulator in breast cancer. Cancer Res 75(7):1516–1526. doi:10.1158/0008-5472.CAN-14-2443

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Fu WM (2015) Identification of differential splicing genes in gliomas using exon expression profiling. Mol Med Rep 11(2):843–850. doi:10.3892/mmr.2014.2775

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Jiang X, Schoch BS, Carroll RS, Black PM, Johnson MD (2007) Aberrant splicing of cyclin-dependent kinase-associated protein phosphatase KAP increases proliferation and migration in glioblastoma. Cancer Res 67(1):130–138

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Eberhart CG, Kai M (2014) RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation. Oncotarget 5(9):2820–2826

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work on glioblastoma in LOP and PAFG labs is supported by the Conselho Nacional de desenvolvimento científico e tecnológico (CNPq—Process Number 400262/2014-2, Brazil) and NIH (5R21CA205475 and 1R21CA175875). CGH is supported by an NIH F32 (CA189647) fellowship. FMM is sponsored by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz O. Penalva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcelino Meliso, F., Hubert, C.G., Favoretto Galante, P.A. et al. RNA processing as an alternative route to attack glioblastoma. Hum Genet 136, 1129–1141 (2017). https://doi.org/10.1007/s00439-017-1819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-017-1819-2

Navigation