Human Genetics

, Volume 136, Issue 7, pp 903–910 | Cite as

A recessive mutation in beta-IV-spectrin (SPTBN4) associates with congenital myopathy, neuropathy, and central deafness

  • Ellen Knierim
  • Esther Gill
  • Franziska Seifert
  • Susanne Morales-Gonzalez
  • Sathya D. Unudurthi
  • Thomas J. Hund
  • Werner Stenzel
  • Markus Schuelke
Original Investigation

Abstract

Congenital myopathies are a heterogeneous group of muscle disorders that are often genetically determined. Here, we investigated a boy with congenital myopathy, deafness, and neuropathy from a consanguineous Kurdish family by autozygosity mapping and whole exome sequencing. We found a homozygous nonsense mutation in SPTBN4 [c.1597C>T, NM_020971.2; p.(Q533*), NP_066022.2; ClinVar SUB2292235] encoding βIV-spectrin, a non-erythrocytic member of the β-spectrin family. Western blot confirmed the absence of the full-length 288 kDa isoform in muscle and of a specific 72 kDa isoform in fibroblasts. Clinical symptoms of the patient largely corresponded to those described for the quivering mouse, a loss-of-function animal model. Since the human phenotype of βIV-spectrin deficiency included a myopathy with incomplete congenital fiber-type disproportion, we investigated muscle of the quivering (qv4J) mouse and found complete absence of type 1 fibers (fiber-type 2 uniformity). Immunohistology confirmed expression of βIV-spectrin in normal human and mouse muscle at the sarcolemma and its absence in patient and quivering (qv4J) mouse. SPTBN4 mRNA-expression levels in healthy skeletal muscle were found in the range of other regulatory proteins. More patients have to be described to confirm the triad of congenital myopathy, neuropathy and deafness as the defining symptom complex for βIV-spectrin deficiency.

Notes

Acknowledgements

The authors would like to thank the patient and his parents for participation in the study.

Authors’ contributions

MS, EK phenotyped the patient and gathered clinical information and material; SMG performed cell culture experiments; EG, FS performed molecular genetics experiments; WS performed muscle histology; SDU, TJH provided and prepared the muscle samples of the quivering (qv4J) mouse; MS performed homozygosity mapping, sequence alignment, and bioinformatic analysis of the WES data. EK analyzed and validated the results of the WES data. EK, MS co-authored the first draft of the manuscript and contributed funding. All authors read the final version of the manuscript for intellectual content and gave their permission for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Funding statement

The project was funded by the Charité-Universitätsmedizin Berlin via the “Rahel-Hirsch” Program to EK, the Deutsche Forschungsgemeinschaft (SFB 665 TP C4) to MS, and the NeuroCure Center of Excellence (Exc 257) to MS.

Supplementary material

439_2017_1814_MOESM1_ESM.pdf (643 kb)
Supplementary material 1 (PDF 642 kb)

References

  1. Bock GR, Steel KP (1983) Inner ear pathology in the deafness mutant mouse. Acta Otolaryngol (Stockh) 96:39–47. doi: 10.3109/00016488309132873 CrossRefGoogle Scholar
  2. Clarke NF (2011) Congenital fiber-type disproportion. Semin Pediatr Neurol 18:264–271. doi: 10.1016/j.spen.2011.10.008 CrossRefPubMedGoogle Scholar
  3. Deol MS, Frank MP, Steel KP, Bock GR (1983) Genetic deafness of central origin. Brain Res 258:177–179. doi: 10.1016/0006-8993(83)91248-9 CrossRefPubMedGoogle Scholar
  4. DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. doi: 10.1038/ng.806 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Devaux JJ (2010) The C-terminal domain of βIV-spectrin is crucial for KCNQ2 aggregation and excitability at nodes of Ranvier. J Physiol 588:4719–4730. doi: 10.1113/jphysiol.2010.196022 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. doi: 10.1093/bioinformatics/bts635 CrossRefPubMedGoogle Scholar
  7. Hedstrom KL, Rasband MN (2006) Intrinsic and extrinsic determinants of ion channel localization in neurons. J Neurochem 98:1345–1352. doi: 10.1111/j.1471-4159.2006.04001.x CrossRefPubMedGoogle Scholar
  8. Hund TJ, Koval OM, Li J et al (2010) A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Investig 120:3508–3519. doi: 10.1172/JCI43621 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Komada M, Soriano P (2002) βIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol 156:337–348. doi: 10.1083/jcb.200110003 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. http://arxiv.org/pdf/1303.3997.pdf. Accessed Sept 3 2015
  11. Maggi L, Scoto M, Cirak S et al (2013) Congenital myopathies—Clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom. Neuromuscul Disord 23:195–205. doi: 10.1016/j.nmd.2013.01.004 CrossRefPubMedGoogle Scholar
  12. North KN, Wang CH, Clarke N et al (2014) Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 24:97–116. doi: 10.1016/j.nmd.2013.11.003 CrossRefPubMedGoogle Scholar
  13. Parkinson NJ, Olsson CL, Hallows JL et al (2001) Mutant β-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat Genet 29:61–65. doi: 10.1038/ng710 CrossRefPubMedGoogle Scholar
  14. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45. doi: 10.1093/nar/29.9.e45 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Relizani K, Mouisel E, Giannesini B et al (2014) Blockade of ActRIIB signaling triggers muscle fatigability and metabolic myopathy. Mol Ther 22:1423–1433. doi: 10.1038/mt.2014.90 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362. doi: 10.1038/nmeth.2890 CrossRefPubMedGoogle Scholar
  17. Seelow D, Schuelke M (2012) HomozygosityMapper2012–bridging the gap between homozygosity mapping and deep sequencing. Nucleic Acids Res 40:W516–W520. doi: 10.1093/nar/gks487 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. doi: 10.1038/nprot.2012.016 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Tse WT, Tang J, Jin O et al (2001) A new spectrin, βIV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J Biol Chem 276:23974–23985. doi: 10.1074/jbc.M009307200 CrossRefPubMedGoogle Scholar
  20. Yang Y, Lacas-Gervais S, Morest DK et al (2004) βIV Spectrins are essential for membrane stability and the molecular organization of nodes of ranvier. J Neurosci 24:7230–7240. doi: 10.1523/JNEUROSCI.2125-04.2004 CrossRefPubMedGoogle Scholar
  21. Yao Z, Snider L, Balog J et al (2014) DUX4-induced gene expression is the major molecular signature in FSHD skeletal muscle. Hum Mol Genet 23:5342–5352. doi: 10.1093/hmg/ddu251 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.NeuroCure Clinical Research CenterCharité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
  2. 2.Department of NeuropediatricsCharité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
  3. 3.Department of NeuropathologyCharité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
  4. 4.The Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusUSA
  5. 5.Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations