Human Genetics

, Volume 136, Issue 9, pp 1237–1245 | Cite as

Modulation of aberrant splicing in human RNA diseases by chemical compounds

Part of the following topical collections:
  1. RNA Processing


Pre-mRNA splicing is an essential step for gene expression in higher eukaryotes. Alternative splicing contributes to diversity of the expressed proteins from the limited number of genes. Disruption of splicing regulation often results in hereditary and sporadic diseases called as ‘RNA diseases’. Modulation of splicing by small chemical compounds and nucleic acids has been tried to target aberrant splicing in those diseases. Several RNA diseases and splicing-target therapeutic approaches will be briefly introduced in this review. Accumulating knowledge about molecular mechanism of aberrant splicing and their correction by chemical compounds is important not only for RNA biologists, but also for clinicians who desire therapies for those diseases.


Duchenne Muscular Dystrophy Spinal Muscular Atrophy Aberrant Splice Exonic Splice Enhancer Familial Dysautonomia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank the people in Dr. Shin-Ichiro Takahashi lab for helpful discussion and comments. This work was supported by Grants-in-Aid for Scientific Research (Grant No. 23112706) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. I apologize to all scientists whose research could not be properly discussed and cited in this review owing to space limitations.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.


  1. Aartsma-Rus A, Krieg AM (2017) FDA approves eteplirsen for duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 27:1–3. doi: 10.1089/nat.2016.0657 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, Ekstein J, Rubin BY (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 68:753–758. doi: 10.1086/318808 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson SL, Qiu J, Rubin BY (2003a) EGCG corrects aberrant splicing of IKAP mRNA in cells from patients with familial dysautonomia. Biochem Biophys Res Commun 310:627–633CrossRefPubMedGoogle Scholar
  4. Anderson SL, Qiu J, Rubin BY (2003b) Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochem Biophys Res Commun 306:303–309CrossRefPubMedGoogle Scholar
  5. Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, Whitney M, Pollok B, Zhang M, Androphy E, Burghes AH (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10:2841–2849CrossRefPubMedGoogle Scholar
  6. Axelrod FB, Liebes L, Gold-Von Simson G, Mendoza S, Mull J, Leyne M, Norcliffe-Kaufmann L, Kaufmann H, Slaugenhaupt SA (2011) Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr Res 70:480–483. doi: 10.1203/PDR.0b013e31822e1825 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bochner R, Ziv Y, Zeevi D, Donyo M, Abraham L, Ashery-Padan R, Ast G (2013) Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 22:2785–2794. doi: 10.1093/hmg/ddt126 CrossRefPubMedGoogle Scholar
  8. Bordet T, Buisson B, Michaud M, Drouot C, Galea P, Delaage P, Akentieva NP, Evers AS, Covey DF, Ostuni MA, Lacapere JJ, Massaad C, Schumacher M, Steidl EM, Maux D, Delaage M, Henderson CE, Pruss RM (2007) Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther 322:709–720. doi: 10.1124/jpet.107.123000 CrossRefPubMedGoogle Scholar
  9. Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384. doi: 10.1038/ng854 CrossRefPubMedGoogle Scholar
  10. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298. doi: 10.1038/nrg775 CrossRefPubMedGoogle Scholar
  11. Cazzola M, Della Porta MG, Malcovati L (2013) The genetic basis of myelodysplasia and its clinical relevance. Blood 122:4021–4034. doi: 10.1182/blood-2013-09-381665 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98:9808–9813. doi: 10.1073/pnas.171105098 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Corrionero A, Minana B, Valcarcel J (2011) Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 25:445–459. doi: 10.1101/gad.2014311 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cuajungco MP, Leyne M, Mull J, Gill SP, Lu W, Zagzag D, Axelrod FB, Maayan C, Gusella JF, Slaugenhaupt SA (2003) Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am J Hum Genet 72:749–758. doi: 10.1086/368263 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, Bailey SL, Bhavsar EB, Chan B, Colla S, Corson L, Feala J, Fekkes P, Ichikawa K, Keaney GF, Lee L, Kumar P, Kunii K, MacKenzie C, Matijevic M, Mizui Y, Myint K, Park ES, Puyang X, Selvaraj A, Thomas MP, Tsai J, Wang JY, Warmuth M, Yang H, Zhu P, Garcia-Manero G, Furman RR, Yu L, Smith PG, Buonamici S (2015) Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep 13:1033–1045. doi: 10.1016/j.celrep.2015.09.053 CrossRefPubMedGoogle Scholar
  16. De Conti L, Baralle M, Buratti E (2013) Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip Rev RNA 4:49–60. doi: 10.1002/wrna.1140 CrossRefPubMedGoogle Scholar
  17. DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K, Jamieson CH, Carson D, Kipps TJ, Frazer KA (2015) Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput Biol 11:e1004105. doi: 10.1371/journal.pcbi.1004105 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dvinge H, Kim E, Abdel-Wahab O, Bradley RK (2016) RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 16:413–430. doi: 10.1038/nrc.2016.51 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Eskens FA, Ramos FJ, Burger H, O’Brien JP, Piera A, de Jonge MJ, Mizui Y, Wiemer EA, Carreras MJ, Baselga J, Tabernero J (2013) Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19:6296–6304. doi: 10.1158/1078-0432.CCR-13-0485 CrossRefPubMedGoogle Scholar
  20. Fairclough RJ, Wood MJ, Davies KE (2013) Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet 14:373–378. doi: 10.1038/nrg3460 CrossRefPubMedGoogle Scholar
  21. Fan L, Lagisetti C, Edwards CC, Webb TR, Potter PM (2011) Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol 6:582–589. doi: 10.1021/cb100356k CrossRefPubMedPubMedCentralGoogle Scholar
  22. Folco EG, Coil KE, Reed R (2011) The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev 25:440–444. doi: 10.1101/gad.2009411 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fu XD, Ares M Jr (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15:689–701. doi: 10.1038/nrg3778 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: insights into their role in health and disease. Hum Genet 135:851–867. doi: 10.1007/s00439-016-1683-5 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hasegawa M, Miura T, Kuzuya K, Inoue A, Won Ki S, Horinouchi S, Yoshida T, Kunoh T, Koseki K, Mino K, Sasaki R, Yoshida M, Mizukami T (2011) Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. ACS Chem Biol 6:229–233. doi: 10.1021/cb100248e CrossRefPubMedGoogle Scholar
  26. Hastings ML, Berniac J, Liu YH, Abato P, Jodelka FM, Barthel L, Kumar S, Dudley C, Nelson M, Larson K, Edmonds J, Bowser T, Draper M, Higgins P, Krainer AR (2009) Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy. Sci Transl Med 1:5ra12. doi: 10.1126/scitranslmed.3000208 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928CrossRefPubMedGoogle Scholar
  28. Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, Faulkner N, Pilat MJ, O’Brien J, LoRusso P (2014) A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32:436–444. doi: 10.1007/s10637-013-0046-5 CrossRefPubMedGoogle Scholar
  29. Howard JM, Sanford JR (2015) The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip Rev RNA 6:93–110. doi: 10.1002/wrna.1260 CrossRefPubMedGoogle Scholar
  30. Ibrahim EC, Hims MM, Shomron N, Burge CB, Slaugenhaupt SA, Reed R (2007) Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia. Hum Mutat 28:41–53. doi: 10.1002/humu.20401 CrossRefPubMedGoogle Scholar
  31. Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, Watanabe H, Kitahara T, Yoshida T, Nakajima H, Tani T, Horinouchi S, Yoshida M (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3:576–583. doi: 10.1038/nchembio.2007.18 CrossRefPubMedGoogle Scholar
  32. Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34:460–463. doi: 10.1038/ng1207 CrossRefPubMedGoogle Scholar
  33. Kendall GC, Mokhonova EI, Moran M, Sejbuk NE, Wang DW, Silva O, Wang RT, Martinez L, Lu QL, Damoiseaux R, Spencer MJ, Nelson SF, Miceli MC (2012) Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci Transl Med 4:164ra160. doi: 10.1126/scitranslmed.3005054 CrossRefPubMedGoogle Scholar
  34. Keren H, Donyo M, Zeevi D, Maayan C, Pupko T, Ast G (2010) Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells. PLoS ONE 5:e15884. doi: 10.1371/journal.pone.0015884 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kole R, Krieg AM (2015) Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 87:104–107. doi: 10.1016/j.addr.2015.05.008 CrossRefPubMedGoogle Scholar
  36. Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, Ishihama Y, Iwata M, Mizui Y (2007) Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3:570–575. doi: 10.1038/nchembio.2007.16 CrossRefPubMedGoogle Scholar
  37. Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90:41–54CrossRefPubMedGoogle Scholar
  38. Kuroyanagi H, Kobayashi T, Mitani S, Hagiwara M (2006) Transgenic alternative-splicing reporters reveal tissue-specific expression profiles and regulation mechanisms in vivo. Nat Methods 3:909–915. doi: 10.1038/nmeth944 CrossRefPubMedGoogle Scholar
  39. Kuroyanagi H, Ohno G, Sakane H, Maruoka H, Hagiwara M (2010) Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans. Nat Protoc 5:1495–1517. doi: 10.1038/nprot.2010.107 CrossRefPubMedGoogle Scholar
  40. Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323. doi: 10.1146/annurev-biochem-060614-034316 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lee SC, Dvinge H, Kim E, Cho H, Micol JB, Chung YR, Durham BH, Yoshimi A, Kim YJ, Thomas M, Lobry C, Chen CW, Pastore A, Taylor J, Wang X, Krivtsov A, Armstrong SA, Palacino J, Buonamici S, Smith PG, Bradley RK, Abdel-Wahab O (2016) Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med 22:672–678. doi: 10.1038/nm.4097 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165CrossRefPubMedGoogle Scholar
  43. Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371:2120–2133. doi: 10.1016/S0140-6736(08)60921-6 CrossRefPubMedGoogle Scholar
  44. Manley JL, Krainer AR (2010) A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev 24:1073–1074. doi: 10.1101/gad.1934910 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Matsuo M, Takeshima Y, Nishio H (2016) Contributions of Japanese patients to development of antisense therapy for DMD. Brain Dev 38:4–9. doi: 10.1016/j.braindev.2015.05.014 CrossRefPubMedGoogle Scholar
  46. Muraki M, Ohkawara B, Hosoya T, Onogi H, Koizumi J, Koizumi T, Sumi K, Yomoda J, Murray MV, Kimura H, Furuichi K, Shibuya H, Krainer AR, Suzuki M, Hagiwara M (2004) Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 279:24246–24254. doi: 10.1074/jbc.M314298200 CrossRefPubMedGoogle Scholar
  47. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463. doi: 10.1038/nature08909 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nishida A, Kataoka N, Takeshima Y, Yagi M, Awano H, Ota M, Itoh K, Hagiwara M, Matsuo M (2011) Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat Commun 2:308. doi: 10.1038/ncomms1306 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X, Van Hoosear M, Shin Y, Chin DN, Keller CG, Beibel M, Renaud NA, Smith TM, Salcius M, Shi X, Hild M, Servais R, Jain M, Deng L, Bullock C, McLellan M, Schuierer S, Murphy L, Blommers MJ, Blaustein C, Berenshteyn F, Lacoste A, Thomas JR, Roma G, Michaud GA, Tseng BS, Porter JA, Myer VE, Tallarico JA, Hamann LG, Curtis D, Fishman MC, Dietrich WF, Dales NA, Sivasankaran R (2015) SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice. Nat Chem Biol 11:511–517. doi: 10.1038/nchembio.1837 CrossRefPubMedGoogle Scholar
  50. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. doi: 10.1038/ng.259 CrossRefPubMedGoogle Scholar
  51. Rigo F, Chun SJ, Norris DA, Hung G, Lee S, Matson J, Fey RA, Gaus H, Hua Y, Grundy JS, Krainer AR, Henry SP, Bennett CF (2014) Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 350:46–55. doi: 10.1124/jpet.113.212407 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Robinson-Hamm JN, Gersbach CA (2016) Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 135:1029–1040. doi: 10.1007/s00439-016-1725-z CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14:115–121CrossRefPubMedGoogle Scholar
  54. Seo J, Howell MD, Singh NN, Singh RN (2013) Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta 1832:2180–2190. doi: 10.1016/j.bbadis.2013.08.005 CrossRefPubMedGoogle Scholar
  55. Shirai CL, White BS, Tripathi M, Tapia R, Ley JN, Ndonwi M, Kim S, Shao J, Carver A, Saez B, Fulton RS, Fronick C, O’Laughlin M, Lagisetti C, Webb TR, Graubert TA, Walter MJ (2017) Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun 8:14060. doi: 10.1038/ncomms14060 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Singh NK, Singh NN, Androphy EJ, Singh RN (2006) Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26:1333–1346. doi: 10.1128/MCB.26.4.1333-1346.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod FB, Gusella JF (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605CrossRefPubMedPubMedCentralGoogle Scholar
  58. Slaugenhaupt SA, Mull J, Leyne M, Cuajungco MP, Gill SP, Hims MM, Quintero F, Axelrod FB, Gusella JF (2004) Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet 13:429–436. doi: 10.1093/hmg/ddh046 CrossRefPubMedGoogle Scholar
  59. Stein CA (2016) Eteplirsen approved for duchenne muscular dystrophy: the FDA faces a difficult choice. Mol Ther 24:1884–1885. doi: 10.1038/mt.2016.188 CrossRefPubMedGoogle Scholar
  60. Takeuchi A, Hosokawa M, Nojima T, Hagiwara M (2010) Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection. PLoS ONE 5:e10946. doi: 10.1371/journal.pone.0010946 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718. doi: 10.1016/j.cell.2009.02.009 CrossRefPubMedGoogle Scholar
  62. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. doi: 10.1038/nature07509 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Luhrmann R (2002) Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J 21:4978–4988CrossRefPubMedPubMedCentralGoogle Scholar
  64. Witten JT, Ule J (2011) Understanding splicing regulation through RNA splicing maps. Trends Genet 27:89–97. doi: 10.1016/j.tig.2010.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann WK, Miyawaki S, Sugano S, Haferlach C, Koeffler HP, Shih LY, Haferlach T, Chiba S, Nakauchi H, Miyano S, Ogawa S (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69. doi: 10.1038/nature10496 CrossRefPubMedGoogle Scholar
  66. Yoshida M, Kataoka N, Miyauchi K, Ohe K, Iida K, Yoshida S, Nojima T, Okuno Y, Onogi H, Usui T, Takeuchi A, Hosoya T, Suzuki T, Hagiwara M (2015) Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci USA 112:2764–2769. doi: 10.1073/pnas.1415525112 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zanetta C, Nizzardo M, Simone C, Monguzzi E, Bresolin N, Comi GP, Corti S (2014) Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clin Ther 36:128–140. doi: 10.1016/j.clinthera.2013.11.006 CrossRefPubMedGoogle Scholar
  68. Zhu J, Mayeda A, Krainer AR (2001) Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 8:1351–1361CrossRefPubMedGoogle Scholar
  69. Zhu L, Zhang Y, Zhang W, Yang S, Chen JQ, Tian D (2009) Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics 10:47. doi: 10.1186/1471-2164-10-47 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations