Genetic differentiation between upland and lowland populations shapes the Y-chromosomal landscape of West Asia


Y-chromosomal variation in West Asian populations has so far been studied in less detail than in the neighboring Europe. Here, we analyzed 598 Y-chromosomes from two West Asian subregions—Transcaucasia and the Armenian plateau—using 40 Y-SNPs and 17 Y-STRs and combined them with previously published data from the region. The West Asian populations fell into two clusters: upland populations from the Anatolian, Armenian and Iranian plateaus, and lowland populations from the Levant, Mesopotamia and the Arabian Peninsula. This geographic subdivision corresponds with the linguistic difference between Indo-European and Turkic speakers, on the one hand, and Semitic speakers, on the other. This subdivision could be traced back to the Neolithic epoch, when upland populations from the Anatolian and Iranian plateaus carried similar haplogroup spectra but did not overlap with lowland populations from the Levant. We also found that the initial gene pool of the Armenian motherland population has been well preserved in most groups of the Armenian Diaspora. In view of the contribution of West Asians to the autosomal gene pool of the steppe Yamnaya archaeological culture, we sequenced a large portion of the Y-chromosome in haplogroup R1b samples from present-day East European steppe populations. The ancient Yamnaya samples are located on the “eastern” R-GG400 branch of haplogroup R1b-L23, showing that the paternal descendants of the Yamnaya still live in the Pontic steppe and that the ancient Yamnaya population was not an important source of paternal lineages in present-day West Europeans.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Abu-Amero KK, Hellani A, González AM, Larruga JM, Cabrera VM, Underhill PA (2009) Saudi Arabian Y-Chromosome diversity and its relationship with nearby regions. BMC Genet 10:59. doi:10.1186/1471-2156-10-59

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allentoft ME, Sikora M, Sjögren KG, Rasmussen S et al (2015) Population genomics of Bronze Age Eurasia. Nature 522(7555):167–172. doi:10.1038/nature14507

    CAS  Article  PubMed  Google Scholar 

  3. Balanovskaia EV, Nurbaev SD, Balanovskiĭ OP, Pocheshkhova EA, Borovinskikh AA, Ginter EK (1999) Genogeographic analysis of subdivided population. The Adyge gene pool in the Caucasian gene pool system. Russian J Genet 35(6):818–830

    CAS  Google Scholar 

  4. Balanovsky O, Rootsi S, Pshenichnov A et al (2008) Two sources of the Russian patrilineal heritage in their Eurasian context. Am J Hum Genet 82(1):236–250. doi:10.1016/j.ajhg.2007.09.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Balanovsky O, Dibirova K, Dybo A et al (2011) Parallel evolution of genes and languages in the caucasus region. Mol Biol Evol 28(10):2905–2920. doi:10.1093/molbev/msr126

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Balanovsky O, Zhabagin M, Agdzhoyan A et al (2015) Deep phylogenetic analysis of haplogroup G1 provides estimates of SNP and STR mutation rates on the human Y-chromosome and reveals migrations of iranic speakers. PLoS One 10(4):e0122968. doi:10.1371/journal.pone.0122968

    Article  PubMed  PubMed Central  Google Scholar 

  7. Balaresque P, Bowden GR, Adams SM, Leung HY, King TE, Rosser ZH, Goodwin J, Moisan JP, Richard C, Millward A, Demaine AG, Barbujani G, Previderè C, Wilson IJ, Tyler-Smith C, Jobling MA (2010) A predominantly neolithic origin for European paternal lineages. PLoS Biol 19 8(1):e1000285. doi:10.1371/journal.pbio.1000285

    Article  Google Scholar 

  8. Batini C, Hallast P, Zadik D et al (2015) Large-scale recent expansion of European patrilineages shown by population resequencing. Nature Commun 6:7152. doi:10.1038/ncomms8152

    CAS  Article  Google Scholar 

  9. Bergstrӧm et al (2016) Deep roots for aboriginal australian Y chromosomes. Current Biology. 10.1016/j.cub.2016.01.028

  10. Battaglia V, Fornarino S, Al-Zahery N et al (2009) Y-chromosomal evidence of the cultural diffusion of agriculture in southeast Europe. Eur J Hum Genet 17(6):820–830. doi:10.1038/ejhg.2008.249

    CAS  Article  PubMed  Google Scholar 

  11. Bouckaert R, Lemey P, Dunn M et al (2012) Mapping the origins and expansion of the Indo-European language family. Science (New York, NY) 337(6097):957–960. doi:10.1126/science.1219669

    CAS  Article  Google Scholar 

  12. Broushaki F, Thomas M, Link V, et al (2016) Early neolithic genomes from the eastern fertile crescent. Science. 2016; Jul 14. Published online. doi: 10.1126/science.aaf7943

  13. Cadenas AM, Zhivotovsky LA, Cavalli-Sforza LL, Underhill PA, Herrera RJ (2008) Y-chromosome diversity characterizes the Gulf of Oman. Eur j hum genet 16(3):374–386. doi:10.1038/sj.ejhg.5201934

    CAS  Article  PubMed  Google Scholar 

  14. Cavalli-Sforza LL, Piazza A, Menozzi P, Mountain J (1988) Reconstruction of human evolution: bringing together genetic, archaeological, and linguistic data. Proc Natl Acad Sci USA 85(16):6002–6006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Cinnioglu C, King R, Kivisild T, Kalfoglu E, Atasoy S, Cavalleri GL et al (2004) Excavating Y-chromosome haplotype strata in Anatolia. Hum Genet 114(2):127–148

    Article  PubMed  Google Scholar 

  16. Devoto G (1962) Origini indeuropee. Sansoni, Florence, p 250

    Google Scholar 

  17. Di Cristofaro J, Pennarun E, Mazières S et al (2013) Afghan Hindu Kush: where Eurasian sub-continent gene flows converge. PLoS One 8(10):e76748. doi:10.1371/journal.pone.0076748

    Article  PubMed  PubMed Central  Google Scholar 

  18. El-Sibai M, Platt DE, Haber M et al (2009) Geographical structure of the Y-chromosomal genetic landscape of the Levant: a coastal-inland contrast. Ann Hum Genet 73(Pt 6):568–581. doi:10.1111/j.1469-1809.2009.00538.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Fenner JN (2005) Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am J Phys Anthropol 128(2):415–423. doi:10.1002/ajpa.20188

    Article  PubMed  Google Scholar 

  20. Flores C, Maca-Meyer N, Larruga JM, Cabrera VM, Karadsheh N, Gonzalez AM (2005) Isolates in a corridor of migrations: a high-resolution analysis of Y-chromosome variation in Jordan. J Hum Genet 50(9):435–441. doi:10.1038/sj.ejhg.5201225

    Article  PubMed  Google Scholar 

  21. Forster P, Harding R, Torroni A, Bandelt HJ (1996) Origin and evolution of native American mtDNA variation: a reappraisal. Am J Hum Genet 59(4):935–945

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gamkrelidze TM, Ivanov VVS (1995) Indo-European and the Indo-Europeans: a reconstruction and historical analysis of a proto-language and a proto-culture, 2nd edn. In: Trends in linguistics: studies and monographs, vol 80

  23. Ge J, Budowle B, Aranda XG, Planz JV, Eisenberg AJ, Chakraborty R (2009) Mutation rates at Y chromosome short tandem repeats in Texas populations. Forensic sci int Genet 3(3):179–184. doi:10.1016/j.fsigen.2009.01.007

    CAS  Article  PubMed  Google Scholar 

  24. Goedbloed M, Vermeulen M, Fang RN et al (2009) Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpFlSTR® Yfiler® PCR amplification kit. Int J Legal Med 123(6):471–482. doi:10.1007/s00414-009-0342-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grugni V, Battaglia V, Hooshiar Kashani B et al (2012) Ancient migratory events in the middle East: new clues from the Y-chromosome variation of modern Iranians. PLoS One 7(7):e41252. doi:10.1371/journal.pone.0041252

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Gusmao L, Sanchez-Diz P, Calafell F, Martin P, Alonso CA, Alvarez-Fernandez F et al (2005) Mutation rates at Y chromosome specific microsatellites. Hum Mutat 26(6):520–528. doi:10.1002/humu.20254

    CAS  Article  PubMed  Google Scholar 

  27. Haak W, Lazaridis I, Patterson N, Rohland N, et al (2015) Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. (7555):207–11. doi:10.1038/nature14317

  28. Haber M, Platt DE, Badro DA et al (2011) Influences of history, geography, and religion on genetic structure: the Maronites in Lebanon. Eur J Hum Genet 19(3):334–340. doi:10.1038/ejhg.2010.177

    Article  PubMed  Google Scholar 

  29. Haber M, Mezzavilla M, Xue Y, Comas D et al (2016) Genetic evidence for an origin of the Armenians from Bronze Age mixing of multiple populations. Eur J Hum Genet 24:931–936. doi:10.1038/ejhg.2015.206

    Article  PubMed  Google Scholar 

  30. Hallast P, Batini C, Zadik D et al (2015) The Y-Chromosome tree bursts into leaf: 13,000 high-confidence SNPs covering the majority of known clades. Mol Biol Evol 32(3):661–673. doi:10.1093/molbev/msu327

    CAS  Article  PubMed  Google Scholar 

  31. Herrera KJ, Lowery RK, Hadden L et al (2012) Neolithic patrilineal signals indicate that the Armenian plateau was repopulated by agriculturalists. Eur J Hum Genet 20(3):313–320. doi:10.1038/ejhg.2011.192

    Article  PubMed  Google Scholar 

  32. Hovannisian RG (ed) (1997) The Armenian people. St Martin’s, New York

    Google Scholar 

  33. Hovhannisyan A, Khachatryan Z, Haber M et al (2014) Different waves and directions of Neolithic migrations in the Armenian Highland. Investiga Genet 5:15. doi:10.1186/s13323-014-0015-6

    Article  Google Scholar 

  34. Jones ER, Gonzalez-Fortes G, Connell S et al (2015) Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nature Commun 6:8912. doi:10.1038/ncomms9912

    CAS  Article  Google Scholar 

  35. Karafet TM, Bulayeva KB, Nichols J, Bulayev OA, Gurgenova F, Omarova J, Yepiskoposyan L, Savina OV, Rodrigue BH, Hammer MF (2016) Coevolution of genes and languages and high levels of population structure among the highland populations of Daghestan. J Hum Genet 61(3):181–191

    Article  PubMed  Google Scholar 

  36. Karmin M, Saag L, Vicente M et al (2015) A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res 25(4):459–466. doi:10.1101/gr.186684.114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Kitchen A, Ehret C, Assefa S, Mulligan CJ (2009) Bayesian phylogenetic analysis of semitic languages identifies an early Bronze Age origin of semitic in the near East. Proc Royal Soc B 276(1668):2703–2710. doi:10.1098/rspb.2009.0408

    Article  Google Scholar 

  38. Koshel SM (2012) Geoinformation technologies in genogeography. In: Lure IK, Kravtsova VI (eds) Modern geographic cartography. Data + p, Moscow, pp 158–166 (In Russian)

    Google Scholar 

  39. Lang DM (1970) Armenia: cradle of civilization. Allen & Unwin, London. ISBN 0-04-956007-7

  40. Lazaridis I, Nadel D, Rollefson G et al (2016) Genomic insights into the origin of farming in the ancient Near East. Nature 536:419–424. doi:10.1038/nature19310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Lowery R, Herrera K, Uribe G, Reguiero M,  Herrera RJ (2013) Sub-population structure evident in forensic Y-STR profiles from Armenian geographical groups. Leg Med (Tokyo) 15(2):85–90. doi:10.1016/j.legalmed.2012.10.003

    CAS  Article  Google Scholar 

  42. Mathieson I, Lazaridis I, Rohland N, Mallick S, Llamas B, Pickrell J, Meller H, Rojo Guerra M, Krause J, Anthony D, Brown D, Fox CL, Cooper A, Alt KW, Haak W, Patterson N, Reich D (2015) Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528(7583):499–503. doi:10.1038/nature16152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Myres NM, Rootsi S, Lin AA et al (2011) A major Y-chromosome haplogroup R1b holocene era founder effect in central and Western Europe. Eur J Hum Genet 19(1):95–101. doi:10.1038/ejhg.2010.146

    Article  PubMed  Google Scholar 

  44. Nasidze I, Sarkisian T, Kerimov A, Stoneking M (2003) Testing hypotheses of language replacement in the Caucasus: evidence from the Y-chromosome. Hum Genet 112(3):255–261

    PubMed  Google Scholar 

  45. Nei M (1975) Molecular population genetics and evolution. North-Holland Pub. Co, Amsterdam

    Google Scholar 

  46. Poznik GD, Xue Y, Mendez FL et al (2016) Punctuated bursts in human male demography inferred from 1244 worldwide Y-chromosome sequences. Nat Genet 48(6):593–599. doi:10.1038/ng.3559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Quintana-Murci L, Veitia R, Fellous M, Semino O, Poloni ES (2003) Genetic structure of Mediterranean populations revealed by Y-chromosome haplotype analysis. Am J Phys Anthropol 121(2):157–171. doi:10.1002/ajpa.10187

    Article  PubMed  Google Scholar 

  48. Ravid-Amir O, Rosset S (2010) Maximum likelihood estimation of locus-specific mutation rates in Y-chromosome short tandem repeats. Bioinformatics 26(18):i440–i445. doi:10.1093/bioinformatics/btq367

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Renfrew C (1987) Archaeology and language: the puzzle of the Indo-European Origins. Jonathan Cape, London

    Google Scholar 

  50. Rootsi S, Behar DM, Järve M et al (2013) Phylogenetic applications of whole Y-chromosome sequences and the Near Eastern origin of Ashkenazi Levites. Nature Commun 4:2928. doi:10.1038/ncomms3928

    Article  Google Scholar 

  51. Rosser ZH, Zerjal T, Hurles ME et al (2000) Y-Chromosomal diversity in Europe is clinal and influenced primarily by geography, rather than by language. Am J Hum Genet 67(6):1526–1543

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Ruhlen M (1987) A guide to the world’s languages. vol I: classification. Stanford University Press, Stanford, p 463

    Google Scholar 

  53. Saillard J, Forster P, Lynnerup N, Bandelt H-J, Nørby S (2000) mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 67(3):718–726

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Sanchez JJ, Hallenberg C, Borsting C, Hernandez A, Morling N (2005) High frequencies of Y chromosome lineages characterized by E3b1, DYS19-11, DYS392-12 in Somali males. Eur J Hum Genet 13(7):856–866. doi:10.1038/sj.ejhg.5201390

    CAS  Article  PubMed  Google Scholar 

  55. Sanchez-Diz P, Alves C, Carvalho E, Carvalho M, Espinheira R, Garcia O et al (2008) Population and segregation data on 17 Y-STRs: results of a GEP-ISFG collaborative study. Int J Legal Med 122(6):529–533. doi:10.1007/s00414-008-0265-z

    Article  PubMed  Google Scholar 

  56. Schneider S, Roessli D, Excoffier L (2000) Arlequin vers. 2.000: a software for population genetics data analysis. User man ver 2:2496–2497 

  57. Semino O, Passarino G, Oefner PJ et al (2000) The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: a Y chromosome perspective. Science 290:1155–1159. doi:10.1126/science.290.5494.1155

    CAS  Article  PubMed  Google Scholar 

  58. Simonian H (ed) (2007) The Hemshin. History, society and identity in the Highlands of Northeast Turkey, New York: Routledge, p 472

    Google Scholar 

  59. StatSoft, Inc. STATISTICA (data analysis software system) (2001) version 62001.

  60. Tarkhnishvili D, Gavashelishvili A, Murtskhvaladze M, Gabelaia M, Tevzadze G (2014) Human paternal lineages, languages, and environment in the Caucasus. Hum Biol 86(2):113–130. doi:10.3378/027.086.0205

    Article  PubMed  Google Scholar 

  61. Tololyan K (2001) Armenian diaspora. Diaspora 9(1):107–136

    Article  Google Scholar 

  62. Torlakian BG (1981) Ethnography of Hamshen Armenians. Ethnography and Folklore. vol. 13. Yerevan. pp. 24–111 (In Armenian)

  63. Underhill PA, Myres NM, Rootsi S et al (2010) Separating the post-glacial coancestry of European and Asian Y chromosomes within haplogroup R1a. Eur J Hum Genet 18(4):479–484. doi:10.1038/ejhg.2009.194

    Article  PubMed  Google Scholar 

  64. Voskarides K, Mazières S, Hadjipanagi D et al (2016) Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze Age settlements. Investig Genet 7:1. doi:10.1186/s13323-016-0032-8

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weale ME, Yepiskoposyan L, Jager RF, Hovhannisyan N, Khudoyan A, Burbage-Hall O (2001) Armenian Y chromosome haplotypes reveal strong regional structure within a single ethno-national group. Hum Genet 109(6):659–674. doi:10.1007/s00439-001-0627-9

    CAS  Article  PubMed  Google Scholar 

  66. Yunusbayev B, Metspalu M, Jarve M, Kutuev I, Rootsi S, Metspalu E et al (2012) The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol Biol Evol 29(1):359–365. doi:10.1093/molbev/msr221

    CAS  Article  PubMed  Google Scholar 

  67. Zalloua PA, Xue Y, Khalife J et al (2008a) Y-Chromosomal diversity in lebanon is structured by recent historical events. Am J Hum Genet 82(4):873–882. doi:10.1016/j.ajhg.2008.01.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Zalloua PA, Platt DE, El Sibai M et al (2008b) Identifying genetic traces of historical expansions: phoenician footprints in the Mediterranean. Am J Hum Genet 83(5):633–642. doi:10.1016/j.ajhg.2008.10.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank all sample donors whose participation made this study possible, and the Georgian church which approved and assisted in sampling in Georgia.

The Genographic Consortium includes: Li Jin, Hui Li, & Shilin Li (Fudan University, Shanghai, China); Pandikumar Swamikrishnan (IBM, Somers, New York, United States); Asif Javed, Laxmi Parida & Ajay K. Royyuru (IBM, Yorktown Heights, New York, United States); R. John Mitchell (La Trobe University, Melbourne, Victoria, Australia); Pierre A. Zalloua (Lebanese American University, Chouran, Beirut, Lebanon); Syama Adhikarla, ArunKumar, GaneshPrasad, Ramasamy Pitchappan, Arun Varatharajan Santhakumari, Kavitha Valampuri (Madurai Kamaraj University, Madurai, Tamil Nadu, India); R. Spencer Wells and Miguel G. Vilar (National Geographic Society, Washington, District of Columbia, United States); Himla Soodyall (National Health Laboratory Service, Johannesburg, South Africa); Elena Balanovska & Oleg Balanovsky (Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia); Chris Tyler-Smith (The Wellcome Trust Sanger Institute, Hinxton, United Kingdom); Fabrício R. Santos (Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil); Jaume Bertranpetit, Marc Haber, Marta Melé, & David Comas(Universitat Pompeu Fabra, Barcelona, Spain); Christina J. Adler, Alan Cooper, Clio S. I. Der Sarkissian & Wolfgang Haak (University of Adelaide, South Australia, Australia); Matthew E. Kaplan & Nirav C. Merchant (University of Arizona, Tucson, Arizona, United States); Colin Renfrew (University of Cambridge, Cambridge, United Kingdom); Andrew C. Clarke & Elizabeth A. Matisoo-Smith (University of Otago, Dunedin, New Zealand); Jill B. Gaieski & Theodore G. Schurr (University of Pennsylvania, Philadelphia, Pennsylvania, United States).

Author information




Corresponding author

Correspondence to O. Balanovsky.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of the Research Centre for Medical Genetics, Moscow, Russia and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


This study received primary support from the Russian Science Foundation Grant 14-14-00827 (to OB, MC, AA, VZ), including data analysis and completing the paper. Y-chromosomal resequencing was done mainly using funding from the Historical Genetics lab in the Moscow Institute of Physics and Technology. Erzurum Armenian samples were genotyped with support from the Russian Foundation for Basic Research (Grant 16-36-00122 to MC), while the Hemsheni and Krasnodar Armenian samples were genotyped with support from the Russian Foundation for Basic Research (Grant 16-06-00364 to EP) and from the Genographic project. CTS was supported by The Wellcome Trust (098051).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

O. Balanovsky and M. Chukhryaeva have equally contributed to this article.

Affiliations for The Genographic Consortium are moved to Acknowledgements.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (BED 482kb)

Supplementary material 1 (VCF 17kb)

Supplementary material 1 (BED 419kb)

Supplementary material 1 (VCF 1326kb)

Supplementary material 1 (BED 413kb)

Supplementary material 1 (VCF 1369kb)

Supplementary material 1 (BED 322kb)

Supplementary material 1 (VCF 1338kb)

Supplementary material 1 (BED 208kb)

Supplementary material 1 (VCF 1454kb)

Supplementary material 1 (BED 328kb)

Supplementary material 1 (VCF 1436kb)

Supplementary material 1 (BED 207kb)

Supplementary material 1 (VCF 1442kb)

Supplementary material 1 (BED 191kb)

Supplementary material 1 (VCF 1480kb)

Supplementary material 1 (BED 422kb)

Supplementary material 1 (VCF 1323kb)

Supplementary Figure 1. Map of the populations studied, and their documented migration routes during historical times. Armenian populations are designated as “A-”.The Hemsheni Armenian population was formed by migration of a small Armenian group into the coastal zone between Erzurum and Trabzon (modern Turkey). They were isolated from the rest of the Armenian people from the 7th to the 20th century, when due to the consequences of the World War I they migrated to the Russian Black Sea coast. Nowadays, about 300,000 Hemsheni live in the Krasnodar region of Russia (Simonian, 2007). Armenians of the Adygea and Krasnodar regions include not only immigrants into the province from the 10th to the 15th century from eastern Armenia, but also a later heterogeneous influx of immigrants. There are 250,000 non-Hemsheni Armenians in the Krasnodar region, and about 15,000 in Adygea. Armenians of Erzurum originated from the Taron area within historical Armenia. During the 19th century, they were moved into the growing area of the Russian empire. Nowadays, they live in the Shirac Province of Armenia and the south-western part of Georgia. Don Armenians have an even more complicated migration history. They claim to be descendants of residents of the medieval Armenian city Ani. The expansion of Seljuk Turks in the 13th century forced them to migrate to the North Caspian area. In the next century, they escaped from Nogais to Crimea, and in the 18th century they were relocated by the Russian government to the lower Don area. There are around 110,000 Don Armenians nowadays (Tololyan, 2001).Laz is a Georgian ethnic group inhabiting the historic region of Lazistan (modern Turkey). The Laz language belongs to the Kartvelian language family. There are about 20,000 Laz in Turkey. Imeretins are another ethnic group of Georgians inhabiting the Imereti province (western Georgia). Their language also belongs to the Kartvelian family. Eastern Georgians are a heterogenous group, including Pshavi, Tushi, Mtiul and Xevsur. All these groups live in mountainous eastern regions of Georgia, and speak different dialects of the Kartvelian family. Armenian Hemsheni and Erzurum samples were collected in Russia and Georgia, respectively, but in geographic-based analyses they were placed in their grandparent’s homeland: Trabzon and Erzurum. This reconstruction method was previously used (Herrera et al., 2012), and we also adopted this approach for relatively recent migrations. The Armenian populations from Iran were located in northwest Iran because the migration occurred a long time ago. Supplementary material 1 (TIF 2634kb)

Supplementary Figure 2. Phylogeographic summary of haplogroup R-L23 diversity in West Asia.Inset: R-L23 frequency distribution map. The map shows that within West Asia, haplogroup R-L23 reaches its highest frequencies among Armenians (around 20%) and the surrounding mountain populations of Turkey and Iran. Almost all Armenian and Georgian L23 samples fall into a newly-recognized “eastern” branch R-GG400. Populations in the Y-STR network are grouped by geography, as legend indicates: West Caucasus – Abkhazes, Cherkessians (Myres et al., 2010); Armenians - A-Krasnodar, A-Adygei, A-Don (this study); A-Ararat, A-Gardman, A-Van, A-Sasun (Herrera et al., 2012); Armenians (Myres et al., 2010); East Caucasus - Avars, Bagvalals, Balkars, Darginians, Lezgis, Tabasarans (Myres et al., 2010); Central Europe - Czech, Hungarians, Poles (Myres et al., 2010); West Europe - Danes, Germans, Swiss (Myres et al., 2010); North Europe - Estonians, Swades South (Malmo) (Myres et al., 2010); Transcaucasia - Georgians, Azeri (our unpublished data), Georgians Megrels (Myres et al., 2010); South Europe - Greeks, Italians, Romanians (Myres et al., 2010); South Asia - Jordanians, Pakistani, Palestinians (Myres et al., 2010); Central Caucasus - Ossets North (Myres et al., 2010); Anatolia - Turkey (Myres et al., 2010).The Y-STR network identifies some clusters of haplotypes, designated by Greek letters. Dotted lines indicate the boundaries of the clusters. Cluster β is specific to the Armenian populations. The cluster is 3000±1200 years old. Supplementary material 1 (TIF 482kb)

Supplementary Figure 3. Phylogeographic summary of haplogroup J-M67 diversity in West Asia.Inset: J-M67 frequency distribution map. Haplogroup J-M67 reaches its frequency peak among Nakh-speaking Chechens and Ingushes in East Caucasus, exhibits moderate frequencies among Armenians and is rare among other West Asians. The haplogroup J2a has been present in Transcaucasia since Upper Paleolithic times (Jones et al., 2015). Populations in the Y-STR network are grouped by geography, as the legend indicates: West Caucasus - Adyghes, Abkhazes (Balanovsky et al., 2011); Transcaucasia - Georgians, Azeri (our unpublished data); Armenians - A-Krasnodar, A-Adygei, A-Don, A-Hemsheni, A-Erzurum (this study); A-Ararat, A-Gardman, A-Van, A-Sasun (Lowery et al., 2013); East Caucasus - Ingush, Chechen (Balanovsky et al., 2011); Central Caucasus - Ossets (Balanovsky et al., 2011). The Y-STR network identifies some clusters of haplotypes, designated by Greek letters. Dotted lines indicate the boundaries of the clusters. There are some Nakh-specific haplotype clusters and an Armenian cluster (α), which originated 2000±500 years BP. As the Y-STR resolution is not enough to reveal the fine haplogroup substructure, further Y-chromosomal sequencing efforts are needed.Supplementary material 1 (TIF 510kb)

Supplementary Figure 4. Phylogeographic summary of haplogroup L-M317 diversity in West Asia.Inset: L-M317 frequency distribution map, which shows that haplogroup L-M317 is rare in most West Asian populations, except for the Laz. Populations in the Y-STR network are grouped by geography, as the legend indicates: West Caucasus – Abkhazes, Avars, (Balanovsky et al., 2011); Transcaucasia – Laz, Imeretins, Armenians Adygei, Armenians Krasnodar, Armenians Don (this study); A-Ararat, A-Gardman, A-Van, A-Sasun (Lowery et al., 2013); East Caucasus - Lezghins (Balanovsky et al., 2011); Central Caucasus - Ossets Iron (Balanovsky et al., 2011); West Asia – Iranians SE, Iranians NW, South Iran, Esfahan (Iran), Kordestan (Iran), Lebanese Maronite N, Lebanese Maronite (Mount), Lebanese Maronite S, Lebanese Shiite N, Pashtun-Kunduz (Haber et al., 2011; Cristofaro et al., 2013); Makrani (Cristofaro et al., 2013); Central Asia - Uzbek-Jawzjan (Cristofaro et al., 2013); Karakalpaks (our unpublished data); Siberia – Altai-Kizhi, Evenks (our unpublished data); Russians – Terek Cossacs, Russians Ryazan (our unpublished data).The Y-STR network did not identify a Laz-specific cluster and many Laz haplotypes were shared with other ethnic groups or are linked by one-step neighbors.Supplementary material 1 (TIF 326kb)

Supplementary Figure 5. Armenian and Georgian populations compared with other West Eurasians. This MDS plot is based on 21 haplogroups and only populations examined for all these haplogroups are shown. Population names follow Table 1.Supplementary material 1 (TIF 616kb)

Supplementary Figure 6. Genetic relationships between Armenian populations. A) Heatmap of the genetic distance matrix and corresponding dendrogram. B) MDS plot based on data from 21 haplogroups. Population names follow Table 1.Supplementary material 1 (TIF 391kb)

Supplementary material 1 (XLSX 138kb)

Supplementary material 1 (BED 354kb)

Supplementary material 1 (VCF 1395kb)

Supplementary material 1 (BED 345kb)

Supplementary material 1 (VCF 1398kb)

Supplementary material 1 (BED 364kb)

Supplementary material 1 (VCF 1365kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balanovsky, O., Chukhryaeva, M., Zaporozhchenko, V. et al. Genetic differentiation between upland and lowland populations shapes the Y-chromosomal landscape of West Asia. Hum Genet 136, 437–450 (2017).

Download citation


  • Arabian Peninsula
  • Iranian Plateau
  • Eastern Branch
  • Haplogroup Frequency
  • Lowland Population