Skip to main content

The heritability of gestational age in a two-million member cohort: implications for spontaneous preterm birth

A Letter to the Editor to this article was published on 03 June 2015

Abstract

Preterm birth (PTB), defined as birth prior to a gestational age (GA) of 37 completed weeks, affects more than 10 % of births worldwide. PTB is the leading cause of neonatal mortality and is associated with a broad spectrum of lifelong morbidity in survivors. The etiology of spontaneous PTB (SPTB) is complex and has an important genetic component. Previous studies have compared monozygotic and dizygotic twin mothers and their families to estimate the heritability of SPTB, but these approaches cannot separate the relative contributions of the maternal and the fetal genomes to GA or SPTB. Using the Utah Population Database, we assessed the heritability of GA in more than 2 million post-1945 Utah births, the largest familial GA dataset ever assembled. We estimated a narrow-sense heritability of 13.3 % for GA and a broad-sense heritability of 24.5 %. A maternal effect (which includes the effect of the maternal genome) accounts for 15.2 % of the variance of GA, and the remaining 60.3 % is contributed by individual environmental effects. Given the relatively low heritability of GA and SPTB in the general population, multiplex SPTB pedigrees are likely to provide more power for gene detection than will samples of unrelated individuals. Furthermore, nongenetic factors provide important targets for therapeutic intervention.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes; Behrman RE, Butler AS (eds) (2007) Preterm birth: causes, consequences, and prevention. The National Academies Press, Washington, DC

  2. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R et al (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379:2162–2172

    PubMed  Article  Google Scholar 

  3. Boyd HA, Poulsen G, Wohlfahrt J, Murray JC, Feenstra B, Melbye M (2009) Maternal contributions to preterm delivery. Am J Epidemiol 170:1358–1364

    PubMed Central  PubMed  Article  Google Scholar 

  4. Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105:201–211

    Article  Google Scholar 

  5. Clausson B, Lichtenstein P, Cnattingius S (2000) Genetic influence on birthweight and gestational length determined by studies in offspring of twins. BJOG Int J Obstet Gynaecol 107:375–381

    CAS  Article  Google Scholar 

  6. Collins JW Jr, David RJ, Handler A, Wall S, Andes S (2004) Very low birthweight in African American infants: the role of maternal exposure to interpersonal racial discrimination. Am J Public Health 94:2132–2138

    PubMed Central  PubMed  Article  Google Scholar 

  7. Crump C, Sundquist K, Winkleby MA, Sundquist J (2013) Early-term birth (37–38 weeks) and mortality in young adulthood. Epidemiology 24:270–276

    PubMed  Article  Google Scholar 

  8. Damus K (2008) Prevention of preterm birth: a renewed national priority. Curr Opin Obstet Gynecol 20:590–596

    PubMed  Article  Google Scholar 

  9. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Essex

    Google Scholar 

  10. Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84

    PubMed  Article  Google Scholar 

  11. Haataja R, Karjalainen MK, Luukkonen A, Teramo K, Puttonen H, Ojaniemi M et al (2011) Mapping a new spontaneous preterm birth susceptibility gene, IGF1R, using linkage, haplotype sharing, and association analysis. PLoS Genet 7:e1001293

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Hamilton BE, Hoyert DL, Martin JA, Strobino DM, Guyer B (2013) Annual summary of vital statistics: 2010–2011. Pediatrics 131:548–558

    PubMed  Article  Google Scholar 

  13. Harris DL (1964) Genotypic Covariances between Inbred Relatives. Genetics 50:1319–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4:e1000008

    PubMed Central  PubMed  Article  Google Scholar 

  15. Hood L, Tian Q (2012) Systems approaches to biology and disease enable translational systems medicine. Genomics Proteomics Bioinform 10:181–185

    CAS  Article  Google Scholar 

  16. Howard DL, Marshall SS, Kaufman JS, Savitz DA (2006) Variations in low birth weight and preterm delivery among blacks in relation to ancestry and nativity: New York City, 1998–2002. Pediatrics 118:e1399–e1405

    PubMed  Article  Google Scholar 

  17. Karn MN, Lang-Brown H, MacKenzie H, Penrose LS (1951) Birth weight, gestation time and survival in sibs. Ann Eugen 15:306–322

    CAS  PubMed  Article  Google Scholar 

  18. Kieler H, Axelsson O, Nilsson S, Waldenstrom U (1995) The length of human pregnancy as calculated by ultrasonographic measurement of the fetal biparietal diameter. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol 6:353–357

    CAS  Article  Google Scholar 

  19. Kistka ZA, Palomar L, Lee KA, Boslaugh SE, Wangler MF, Cole FS et al (2007) Racial disparity in the frequency of recurrence of preterm birth. Am J Obstet Gynecol 196(131):e1–e6

    Google Scholar 

  20. Kistka ZA, DeFranco EA, Ligthart L, Willemsen G, Plunkett J, Muglia LJ et al (2008) Heritability of parturition timing: an extended twin design analysis. Am J Obstet Gynecol 199(43):e1–e5

    PubMed  Google Scholar 

  21. Li DK (1999) Changing paternity and the risk of preterm delivery in the subsequent pregnancy. Epidemiology 10:148–152

    CAS  PubMed  Article  Google Scholar 

  22. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE et al (2012) Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379:2151–2161

    PubMed  Article  Google Scholar 

  23. Lunde A, Melve KK, Gjessing HK, Skjaerven R, Irgens LM (2007) Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am J Epidemiol 165:734–741

    PubMed  Article  Google Scholar 

  24. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  25. Magnus P, Bakketeig LS, Skjaerven R (1993) Correlations of birth weight and gestational age across generations. Ann Hum Biol 20:231–238

    CAS  PubMed  Article  Google Scholar 

  26. Mathews TJ, MacDorman MF (2006) Infant mortality statistics from the 2003 period linked birth/infant death data set. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, vol 54, pp 1–29

  27. Muglia LJ, Katz M (2010) The enigma of spontaneous preterm birth. N Engl J Med 362:529–535

    CAS  PubMed  Article  Google Scholar 

  28. Myking S, Boyd HA, Myhre R, Feenstra B, Jugessur A, Devold Pay AS et al (2013) X-chromosomal maternal and fetal SNPs and the risk of spontaneous preterm delivery in a Danish/Norwegian genome-wide association study. PLoS One 8:e61781

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. Onderdonk AB, Hecht JL, McElrath TF, Delaney ML, Allred EN, Leviton A et al (2008) Colonization of second-trimester placenta parenchyma. Am J Obstet Gynecol 199(52):e1–e10

    PubMed  Google Scholar 

  30. Plunkett J, Muglia LJ (2008) Genetic contributions to preterm birth: implications from epidemiological and genetic association studies. Ann Med 40:167–195

    CAS  PubMed  Article  Google Scholar 

  31. Plunkett J, Feitosa MF, Trusgnich M, Wangler MF, Palomar L, Kistka ZA et al (2009) Mother’s genome or maternally-inherited genes acting in the fetus influence gestational age in familial preterm birth. Hum Hered 68:209–219

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Porter TF, Fraser AM, Hunter CY, Ward RH, Varner MW (1997) The risk of preterm birth across generations. Obstet Gynecol 90:63–67

    CAS  PubMed  Article  Google Scholar 

  33. Rahman I, Bennet AM, Pedersen NL, de Faire U, Svensson P, Magnusson PK (2009) Genetic dominance influences blood biomarker levels in a sample of 12,000 Swedish elderly twins. Twin Res Hum Genet Off J Int Soc Twin Stud 12:286–294

    Article  Google Scholar 

  34. Reich ES (2012) Pre-term births on the rise. Nature 485:20

    CAS  PubMed  Article  Google Scholar 

  35. Shaw RG, Byers DL, Shaw FH (1998) Genetic components of variation in Nemophila menziesii undergoing inbreeding: morphology and flowering time. Genetics 150:1649–1661

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Stata Corp (2011) STATA Statistical Software: Release 12. College Station, TX

  37. Svensson AC, Sandin S, Cnattingius S, Reilly M, Pawitan Y, Hultman CM et al (2009) Maternal effects for preterm birth: a genetic epidemiologic study of 630,000 families. Am J Epidemiol 170:1365–1372

    PubMed  Article  Google Scholar 

  38. Swamy GK, Ostbye T, Skjaerven R (2008) Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. JAMA 299:1429–1436

    CAS  PubMed  Article  Google Scholar 

  39. Tenesa A, Haley CS (2013) The heritability of human disease: estimation, uses and abuses. Nat Rev Genet 14:139–149

    CAS  PubMed  Article  Google Scholar 

  40. Treloar SA, Macones GA, Mitchell LE, Martin NG (2000) Genetic influences on premature parturition in an Australian twin sample. Twin Res Off J Int Soc Twin Stud 3:80–82

    CAS  Article  Google Scholar 

  41. Vatten LJ, Skjaerven R (2003) Effects on pregnancy outcome of changing partner between first two births: prospective population study. BMJ 327:1138

    PubMed Central  PubMed  Article  Google Scholar 

  42. Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S et al (2007) Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am J Hum Genet 81:1104–1110

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266

    CAS  PubMed  Article  Google Scholar 

  44. Watts DH, Krohn MA, Hillier SL, Eschenbach DA (1992) The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol 79:351–357

    CAS  PubMed  Article  Google Scholar 

  45. Wilcox AJ, Skjaerven R, Lie RT (2008) Familial patterns of preterm delivery: maternal and fetal contributions. Am J Epidemiol 167:474–479

    PubMed  Article  Google Scholar 

  46. Williams JT, Blangero J (2004) Power of variance component linkage analysis-II. Discrete traits. Ann Hum Genet 68:620–632

    CAS  PubMed  Article  Google Scholar 

  47. Winkvist A, Mogren I, Hogberg U (1998) Familial patterns in birth characteristics: impact on individual and population risks. Int J Epidemiol 27:248–254

    CAS  PubMed  Article  Google Scholar 

  48. Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR (2000) Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med 343:378–384

    CAS  PubMed  Article  Google Scholar 

  49. Wu W, Clark EA, Stoddard GJ, Watkins WS, Esplin MS, Manuck TA et al (2013a) Effect of interleukin-6 polymorphism on risk of preterm birth within population strata: a meta-analysis. BMC Genet 14:30

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. Wu W, Clark EA, Manuck TA, Esplin MS, Varner MW, Jorde LB (2013b) A Genome-Wide Association Study of spontaneous preterm birth in a European population. F1000 Research

  51. Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S et al (2013) Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genet 9:e1003520

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

EASC is supported by National Institutes of Health, National Institute of Child Health and Human Development (K23HD061910). This investigation was supported by the University of Utah Study Design and Biostatistics Center, with funding in part from the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant 8UL1TR000105 (formerly UL1RR025764). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to the Utah Population Database (UPDB) for providing and maintaining invaluable data for quantitative genetics analysis. We would also like to thank Jahn Barlow from the Utah Resource for Genetic and Epidemiologic Research (RGE), and Kristine Larrabee from the Department of Obstetrics and Gynecology, University of Utah, for their help and support for this study.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lynn B. Jorde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Witherspoon, D.J., Fraser, A. et al. The heritability of gestational age in a two-million member cohort: implications for spontaneous preterm birth. Hum Genet 134, 803–808 (2015). https://doi.org/10.1007/s00439-015-1558-1

Download citation

Keywords

  • Preterm Birth
  • Maternal Effect
  • Dominance Variance
  • Last Menstrual Period
  • Caesarean Section Birth