Human Genetics

, Volume 134, Issue 4, pp 405–421

Types and effects of protein variations

Original Investigation

Abstract

Variations in proteins have very large number of diverse effects affecting sequence, structure, stability, interactions, activity, abundance and other properties. Although protein-coding exons cover just over 1 % of the human genome they harbor an disproportionately large portion of disease-causing variants. Variation ontology (VariO) has been developed for annotation and description of variation effects, mechanisms and consequences. A holistic view for variations in proteins is made available along with examples of real cases. Protein variants can be of genetic origin or emerge at protein level. Systematic names are provided for all variation types, a more detailed description can be made by explaining changes to protein function, structure and properties. Examples are provided for the effects and mechanisms, usually in relation to human diseases. In addition, the examples are selected so that protein 3D structural changes, when relevant, are included and visualized. Here, systematics is described for protein variants based on VariO. It will benefit the unequivocal description of variations and their effects and further reuse and integration of data from different sources.

References

  1. Advani AS, Pendergast AM (2002) Bcr–Abl variants: biological and clinical aspects. Leuk Res 26:713–720PubMedGoogle Scholar
  2. Aghamohammadi A, Fiorini M, Moin M, Parvaneh N, Teimourian S, Yeganeh M, Goffi F, Kanegane H, Amirzargar AA, Pourpak Z, Rezaei N, Salavati A, Pouladi N, Abdollahzade S, Notarangelo LD, Miyawaki T, Plebani A (2006) Clinical, immunological and molecular characteristics of 37 Iranian patients with X-linked agammaglobulinemia. Int Arch Allergy Immunol 141:408–414. doi:10.1159/000095469 PubMedGoogle Scholar
  3. Ali H, Olatubosun A, Vihinen M (2012) Classification of mismatch repair gene missense variants with PON-MMR. Hum Mutat 33:642–650. doi:10.1002/humu.22038 PubMedGoogle Scholar
  4. Ali H, Urolagin S, Gurarslan O, Vihinen M (2014) Performance of protein disorder prediction programs on amino acid substitutions. Hum Mutat 35:794–804. doi:10.1002/humu.22564 PubMedGoogle Scholar
  5. Babady NE, Pang YP, Elpeleg O, Isaya G (2007) Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci USA 104:6158–6163. doi:10.1073/pnas.0610618104 PubMedCentralPubMedGoogle Scholar
  6. Bennett MJ, Lebron JA, Bjorkman PJ (2000) Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403:46–53. doi:10.1038/47417 PubMedGoogle Scholar
  7. Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543:203–222PubMedGoogle Scholar
  8. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R (2009) Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 30:1237–1244. doi:10.1002/humu.21047 PubMedGoogle Scholar
  9. Capriotti E, Fariselli P, Calabrese R, Casadio R (2005) Predicting protein stability changes from sequences using support vector machines. Bioinformatics 21(Suppl 2):254–258. doi:10.1093/bioinformatics/bti1109 Google Scholar
  10. Chen YJ, Lin SC, Tzeng SR, Patel HV, Lyu PC, Cheng JW (1996) Stability and folding of the SH3 domain of Bruton’s tyrosine kinase. Proteins 26:465–471. doi:10.1002/(sici)1097-0134(199612)26:4<465:aid-prot7>3.0.co;2-a PubMedGoogle Scholar
  11. Chen W, van der Kamp MW, Daggett V (2010) Diverse effects on the native β-sheet of the human prion protein due to disease-associated mutations. Biochemistry 49:9874–9881. doi:10.1021/bi101449f PubMedCentralPubMedGoogle Scholar
  12. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62:1125–1132. doi:10.1002/prot.20810 PubMedGoogle Scholar
  13. Chiti F, Taddei N, White PM, Bucciantini M, Magherini F, Stefani M, Dobson CM (1999) Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nat Struct Biol 6:1005–1009. doi:10.1038/14890 PubMedGoogle Scholar
  14. Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinform 8:65. doi:10.1186/1471-2105-8-65 Google Scholar
  15. Danielian S, El-Hakeh J, Basilico G, Oleastro M, Rosenzweig S, Feldman G, Berozdnik L, Galicchio M, Gallardo A, Giraudi V, Liberatore D, Rivas EM, Zelazko M (2003) Bruton tyrosine kinase gene mutations in Argentina. Hum Mutat 21:451. doi:10.1002/humu.9131 PubMedGoogle Scholar
  16. D’Antonio C, Molinski S, Ahmadi S, Huan LJ, Wellhauser L, Bear CE (2013) Conformational defects underlie proteasomal degradation of Dent’s disease-causing mutants of ClC-5. Biochem J 452:391–400. doi:10.1042/bj20121848 PubMedGoogle Scholar
  17. de Beer TA, Laskowski RA, Parks SL, Sipos B, Goldman N, Thornton JM (2013) Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset. PLoS Comput Biol 9:e1003382. doi:10.1371/journal.pcbi.1003382 PubMedCentralPubMedGoogle Scholar
  18. den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109:121–124Google Scholar
  19. Famiglietti ML, Estreicher A, Gos A, Bolleman J, Gehant S, Breuza L, Bridge A, Poux S, Redaschi N, Bougueleret L, Xenarios I (2014) Genetic variations and diseases in UniProtKB/Swiss-Prot: the ins and outs of expert manual curation. Hum Mutat 35:927–935. doi:10.1002/humu.22594 PubMedCentralPubMedGoogle Scholar
  20. Feng S, Zhao TJ, Zhou HM, Yan YB (2007) Effects of the single point genetic mutation D54G on muscle creatine kinase activity, structure and stability. Int J Biochem Cell Biol 39:392–401. doi:10.1016/j.biocel.2006.09.004 PubMedGoogle Scholar
  21. Ferrer-Costa C, Orozco M, de la Cruz X (2002) Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties. J Mol Biol 315:771–786. doi:10.1006/jmbi.2001.5255 PubMedGoogle Scholar
  22. Fiorini M, Franceschini R, Soresina A, Schumacher RF, Ugazio AG, Rossi P, Plebani A, Notarangelo LD (2004) BTK: 22 novel and 25 recurrent mutations in European patients with X-linked agammaglobulinemia. Hum Mutat 23:286. doi:10.1002/humu.9219 PubMedGoogle Scholar
  23. Fukumura S, Adachi N, Nagao M, Tsutsumi H (2011) A novel proteolipid protein 1 gene mutation causing classical type Pelizaeus–Merzbacher disease. Brain Dev 33:697–699. doi:10.1016/j.braindev.2010.11.010 PubMedGoogle Scholar
  24. Furnham N, de Beer TA, Thornton JM (2012) Current challenges in genome annotation through structural biology and bioinformatics. Curr Opin Struct Biol 22:594–601. doi:10.1016/j.sbi.2012.07.005 PubMedGoogle Scholar
  25. Futatani T, Watanabe C, Baba Y, Tsukada S, Ochs HD (2001) Bruton’s tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. Br J Haematol 114:141–149PubMedGoogle Scholar
  26. Gersting SW, Kemter KF, Staudigl M, Messing DD, Danecka MK, Lagler FB, Sommerhoff CP, Roscher AA, Muntau AC (2008) Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet 83:5–17. doi:10.1016/j.ajhg.2008.05.013 PubMedCentralPubMedGoogle Scholar
  27. Guo B, Audu CO, Cochran JC, Mierke DF, Pellegrini M (2014) Protein engineering of the N-terminus of NEMO: structure stabilization and rescue of IKKβ binding. Biochemistry 53:6776–6785. doi:10.1021/bi500861x PubMedGoogle Scholar
  28. Hamasaki-Katagiri N, Salari R, Wu A, Qi Y, Schiller T, Filiberto AC, Schisterman EF, Komar AA, Przytycka TM, Kimchi-Sarfaty C (2013) A gene-specific method for predicting hemophilia-causing point mutations. J Mol Biol 425:4023–4033. doi:10.1016/j.jmb.2013.07.037 PubMedCentralPubMedGoogle Scholar
  29. He X, Lobsiger J, Stocker A (2009) Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. Proc Natl Acad Sci USA 106:18545–18550. doi:10.1073/pnas.0907454106 PubMedCentralPubMedGoogle Scholar
  30. Hershfield MS (2003) Genotype is an important determinant of phenotype in adenosine deaminase deficiency. Curr Opin Immunol 15:571–577PubMedGoogle Scholar
  31. Holinski-Feder E, Weiss M, Brandau O, Jedele KB, Nore B, Bäckesjö CM, Vihinen M, Hubbard SR, Belohradsky BH, Smith CI, Meindl A (1998) Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course. Pediatrics 101:276–284PubMedGoogle Scholar
  32. Izarzugaza JM, Vazquez M, del Pozo A, Valencia A (2013) wKinMut: an integrated tool for the analysis and interpretation of mutations in human protein kinases. BMC Bioinform 14:345. doi:10.1186/1471-2105-14-345 Google Scholar
  33. Izumi H, Kaneko Y (2012) Evidence of asymmetric cell division and centrosome inheritance in human neuroblastoma cells. Proc Natl Acad Sci USA 109:18048–18053. doi:10.1073/pnas.1205525109 PubMedCentralPubMedGoogle Scholar
  34. Jin Y, Mazza C, Christie JR, Giliani S, Fiorini M, Mella P, Gandellini F, Stewart DM, Zhu Q, Nelson DL, Notarangelo LD, Ochs HD (2004) Mutations of the Wiskott–Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood 104:4010–4019. doi:10.1182/blood-2003-05-1592 PubMedGoogle Scholar
  35. Kannu P, Bateman J, Savarirayan R (2012) Clinical phenotypes associated with type II collagen mutations. J Paediatr Child Health 48:E38–E43. doi:10.1111/j.1440-1754.2010.01979.x PubMedGoogle Scholar
  36. Khan S, Vihinen M (2007) Spectrum of disease-causing mutations in protein secondary structures. BMC Struct Biol 7:56. doi:10.1186/1472-6807-7-56 PubMedCentralPubMedGoogle Scholar
  37. Khan S, Vihinen M (2010) Performance of protein stability predictors. Hum Mutat 31:675–684. doi:10.1002/humu.21242 PubMedGoogle Scholar
  38. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315. doi:10.1038/ng.2892 PubMedCentralPubMedGoogle Scholar
  39. Kucukkal TG, Yang Y, Chapman SC, Cao W, Alexov E (2014) Computational and experimental approaches to reveal the effects of single nucleotide polymorphisms with respect to disease diagnostics. Int J Mol Sci 15:9670–9717. doi:10.3390/ijms15069670 PubMedCentralPubMedGoogle Scholar
  40. Lappalainen I, Thusberg J, Shen B, Vihinen M (2008) Genome wide analysis of pathogenic SH2 domain mutations. Proteins 72:779–792. doi:10.1002/prot.21970 PubMedGoogle Scholar
  41. Lasry I, Seo YA, Ityel H, Shalva N, Pode-Shakked B, Glaser F, Berman B, Berezovsky I, Goncearenco A, Klar A, Levy J, Anikster Y, Kelleher SL, Assaraf YG (2012) A dominant negative heterozygous G87R mutation in the zinc transporter, ZnT-2 (SLC30A2), results in transient neonatal zinc deficiency. J Biol Chem 287:29348–29361. doi:10.1074/jbc.M112.368159 PubMedCentralPubMedGoogle Scholar
  42. Laurila K, Vihinen M (2011) PROlocalizer: integrated web service for protein subcellular localization prediction. Amino Acids 40:975–980. doi:10.1007/s00726-010-0724-y PubMedCentralPubMedGoogle Scholar
  43. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55. doi:10.1038/nature05096 PubMedGoogle Scholar
  44. Lehn A, Boyle R, Brown H, Airey C, Mellick G (2012) Neuroferritinopathy. Parkinsonism Relat Disord 18:909–915. doi:10.1016/j.parkreldis.2012.06.021 PubMedGoogle Scholar
  45. Lewis HA, Wang C, Zhao X, Hamuro Y, Conners K, Kearins MC, Lu F, Sauder JM, Molnar KS, Coales SJ, Maloney PC, Guggino WB, Wetmore DR, Weber PC, Hunt JF (2010) Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. J Mol Biol 396:406–430. doi:10.1016/j.jmb.2009.11.051 PubMedGoogle Scholar
  46. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P (2009) Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25:2744–2750. doi:10.1093/bioinformatics/btp528 PubMedCentralPubMedGoogle Scholar
  47. Liu R, Xu H, Wei Z, Wang Y, Lin Y, Gong W (2009) Crystal structure of human adenylate kinase 4 (L171P) suggests the role of hinge region in protein domain motion. Biochem Biophys Res Commun 379:92–97. doi:10.1016/j.bbrc.2008.12.012 PubMedGoogle Scholar
  48. Longley MJ, Humble MM, Sharief FS, Copeland WC (2010) Disease variants of the human mitochondrial DNA helicase encoded by C10orf2 differentially alter protein stability, nucleotide hydrolysis, and helicase activity. J Biol Chem 285:29690–29702. doi:10.1074/jbc.M110.151795 PubMedCentralPubMedGoogle Scholar
  49. Lourdel S, Grand T, Burgos J, González W, Sepulveda FV, Teulon J (2012) ClC-5 mutations associated with Dent’s disease: a major role of the dimer interface. Pflugers Arch 463:247–256. doi:10.1007/s00424-011-1052-0 PubMedGoogle Scholar
  50. Lupo V, Galindo MI, Martinez-Rubio D, Sevilla T, Vilchez JJ, Palau F, Espinos C (2009) Missense mutations in the SH3TC2 protein causing Charcot–Marie–Tooth disease type 4C affect its localization in the plasma membrane and endocytic pathway. Hum Mol Genet 18:4603–4614. doi:10.1093/hmg/ddp427 PubMedGoogle Scholar
  51. Mahajan S, Fargnoli J, Burkhardt AL, Kut SA, Saouaf SJ, Bolen JB (1995) Src family protein tyrosine kinases induce autoactivation of Bruton’s tyrosine kinase. Mol Cell Biol 15:5304–5311PubMedCentralPubMedGoogle Scholar
  52. Mao C, Zhou M, Uckun FM (2001) Crystal structure of Bruton’s tyrosine kinase domain suggests a novel pathway for activation and provides insights into the molecular basis of X-linked agammaglobulinemia. J Biol Chem 276:41435–41443. doi:10.1074/jbc.M104828200 PubMedGoogle Scholar
  53. Martínez-Martínez I, Johnson DJ, Yamasaki M, Navarro-Fernández J, Ordóñez A, Vicente V, Huntington JA, Corral J (2012) Type II antithrombin deficiency caused by a large in-frame insertion: structural, functional and pathological relevance. J Thromb Haemost 10:1859–1866. doi:10.1111/j.1538-7836.2012.04839.x PubMedGoogle Scholar
  54. Mattsson PT, Lappalainen I, Bäckesjö CM, Brockmann E, Lauren S, Vihinen M, Smith CIE (2000) Six X-linked agammaglobulinemia-causing missense mutations in the Src homology 2 domain of Bruton’s tyrosine kinase: phosphotyrosine-binding and circular dichroism analysis. J Immunol 164:4170–4177PubMedGoogle Scholar
  55. Maurer-Stroh S, Debulpaep M, Kuemmerer N, de la Lopez Paz M, Martins IC, Reumers J, Morris KL, Copland A, Serpell L, Serrano L, Schymkowitz JW, Rousseau F (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242. doi:10.1038/nmeth.1432 PubMedGoogle Scholar
  56. McCutchen SL, Colon W, Kelly JW (1993) Transthyretin mutation Leu-55-Pro significantly alters tetramer stability and increases amyloidogenicity. Biochemistry 32:12119–12127PubMedGoogle Scholar
  57. Mehtälä ML, Lensink MF, Pietikäinen LP, Hiltunen JK, Glumoff T (2013) On the molecular basis of D-bifunctional protein deficiency type III. PLoS One 8:e53688. doi:10.1371/journal.pone.0053688 PubMedCentralPubMedGoogle Scholar
  58. Niroula A, Urolagin S, Vihinen M (2015) PON-P2: prediction method for fast and reliable identification of harmful variants. PLoS One (in press)Google Scholar
  59. Nishiguchi KM, Sokal I, Yang L, Roychowdhury N, Palczewski K, Berson EL, Dryja TP, Baehr W (2004) A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration. Invest Ophthalmol Vis Sci 45:3863–3870. doi:10.1167/iovs.04-0590 PubMedCentralPubMedGoogle Scholar
  60. Noetzli L, Sanz PG, Brodsky GL, Hinckley JD, Giugni JC, Giannaula RJ, Gonzalez-Alegre P, Di Paola J (2014) A novel mutation in PLP1 causes severe hereditary spastic paraplegia type 2. Gene 533:447–450. doi:10.1016/j.gene.2013.09.076 PubMedGoogle Scholar
  61. Nowak KJ, Ravenscroft G, Laing NG (2013) Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol 125:19–32. doi:10.1007/s00401-012-1019-z PubMedGoogle Scholar
  62. Okoh MP, Vihinen M (1999) Pleckstrin homology domains of tec family protein kinases. Biochem Biophys Res Commun 265:151–157. doi:10.1006/bbrc.1999.1407 PubMedGoogle Scholar
  63. Okumura N, Terasawa F, Takezawa Y, Hirota-Kawadobora M, Inaba T, Fujita N, Saito M, Sugano M, Honda T (2012) Heterozygous Bβ-chain C-terminal 12 amino acid elongation variant, BβX462W (Kyoto VI), showed dysfibrinogenemia. Blood Coagul Fibrinolysis 23:87–90. doi:10.1097/MBC.0b013e32834cb243 PubMedGoogle Scholar
  64. Olatubosun A, Väliaho J, Härkönen J, Thusberg J, Vihinen M (2012) PON-P: integrated predictor for pathogenicity of missense variants. Hum Mutat 33:1166–1174. doi:10.1002/humu.22102 PubMedGoogle Scholar
  65. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom 9(Suppl 1):S1. doi:10.1186/1471-2164-9-s1-s1 Google Scholar
  66. Pan M, Kalie E, Scaglione BJ, Raveche ES, Schreiber G, Langer JA (2008) Mutation of the IFNAR-1 receptor binding site of human IFN-α2 generates type I IFN competitive antagonists. Biochemistry 47:12018–12027. doi:10.1021/bi801588g PubMedGoogle Scholar
  67. Perniola R, Musco G (2014) The biophysical and biochemical properties of the autoimmune regulator (AIRE) protein. Biochim Biophys Acta 1842:326–337. doi:10.1016/j.bbadis.2013.11.020 PubMedGoogle Scholar
  68. Piirilä H, Väliaho J, Vihinen M (2006) Immunodeficiency mutation databases (IDbases). Hum Mutat 27:1200–1208. doi:10.1002/humu.20405 PubMedGoogle Scholar
  69. Roucou X, Gains M, LeBlanc AC (2004) Neuroprotective functions of prion protein. J Neurosci Res 75:153–161. doi:10.1002/jnr.10864 PubMedGoogle Scholar
  70. Schaafsma G, Vihinen M (2014) VariSNP, a benchmark database for variations from dbSNP. Hum Mutat. doi:10.1002/humu.22727
  71. Schlotawa L, Radhakrishnan K, Baumgartner M, Schmid R, Schmidt B, Dierks T, Gartner J (2013) Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency. Eur J Hum Genet 21:1020–1023. doi:10.1038/ejhg.2012.291 PubMedCentralPubMedGoogle Scholar
  72. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362. doi:10.1038/nmeth.2890 PubMedGoogle Scholar
  73. Sebastião MP, Saraiva MJ, Damas AM (1998) The crystal structure of amyloidogenic Leu55 → Pro transthyretin variant reveals a possible pathway for transthyretin polymerization into amyloid fibrils. J Biol Chem 273:24715–24722PubMedGoogle Scholar
  74. Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, Iden S, Wirth B, Eysel P, Koerber F, Schoenau E, Bohlander SK, Wollnik B, Netzer C (2012) A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91:349–357. doi:10.1016/j.ajhg.2012.06.011 PubMedCentralPubMedGoogle Scholar
  75. Shen B, Vihinen M (2004) Conservation and covariance in PH domain sequences: physicochemical profile and information theoretical analysis of XLA-causing mutations in the Btk PH domain. Protein Eng Des Sel 17:267–276. doi:10.1093/protein/gzh030 PubMedGoogle Scholar
  76. Shi J, Lua S, Tong JS, Song J (2010) Elimination of the native structure and solubility of the hVAPB MSP domain by the Pro56Ser mutation that causes amyotrophic lateral sclerosis. Biochemistry 49:3887–3897. doi:10.1021/bi902057a PubMedGoogle Scholar
  77. Srikumar PS, Rohini K (2013) Exploring the structural insights on human laforin mutation K87A in Lafora disease—a molecular dynamics study. Appl Biochem Biotechnol 171:874–882. doi:10.1007/s12010-013-0393-x PubMedGoogle Scholar
  78. Stefl S, Nishi H, Petukh M, Panchenko AR, Alexov E (2013) Molecular mechanisms of disease-causing missense mutations. J Mol Biol 425:3919–3936. doi:10.1016/j.jmb.2013.07.014 PubMedCentralPubMedGoogle Scholar
  79. Steward RE, MacArthur MW, Laskowski RA, Thornton JM (2003) Molecular basis of inherited diseases: a structural perspective. Trends Genet 19:505–513. doi:10.1016/s0168-9525(03)00195-1 PubMedGoogle Scholar
  80. Storz JF, Zera AJ (2011) Experimental approaches to evaluate the contributions of candidate protein-coding mutations to phenotypic evolution. Methods Mol Biol 772:377–396. doi:10.1007/978-1-61779-228-1_22 PubMedGoogle Scholar
  81. Støy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, Below JE, Hayes MG, Cox NJ, Lipkind GM, Lipton RB, Greeley SA, Patch AM, Ellard S, Steiner DF, Hattersley AT, Philipson LH, Bell GI (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 104:15040–15044. doi:10.1073/pnas.0707291104 PubMedCentralPubMedGoogle Scholar
  82. Tashita H, Fukao T, Kaneko H, Teramoto T, Inoue R, Kasahara K, Kondo N (1998) Molecular basis of selective IgG2 deficiency. The mutated membrane-bound form of gamma2 heavy chain caused complete IGG2 deficiency in two Japanese siblings. J Clin Invest 101:677–681. doi:10.1172/jci1672 PubMedCentralPubMedGoogle Scholar
  83. Thusberg J, Vihinen M (2006) Bioinformatic analysis of protein structure–function relationships: case study of leukocyte elastase (ELA2) missense mutations. Hum Mutat 27:1230–1243. doi:10.1002/humu.20407 PubMedGoogle Scholar
  84. Thusberg J, Vihinen M (2009) Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat 30:703–714. doi:10.1002/humu.20938 PubMedGoogle Scholar
  85. Thusberg J, Olatubosun A, Vihinen M (2011) Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 32:358–368. doi:10.1002/humu.21445 PubMedGoogle Scholar
  86. Timofeyeva NA, Koval VV, Ishchenko AA, Saparbaev MK, Fedorova OS (2011) Lys98 substitution in human AP endonuclease 1 affects the kinetic mechanism of enzyme action in base excision and nucleotide incision repair pathways. PLoS One 6:e24063. doi:10.1371/journal.pone.0024063 PubMedCentralPubMedGoogle Scholar
  87. Trovato A, Seno F, Tosatto SC (2007) The PASTA server for protein aggregation prediction. Protein Eng Des Sel 20:521–523. doi:10.1093/protein/gzm042 PubMedGoogle Scholar
  88. Tsukamoto H, Farrens DL (2013) A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor. J Biol Chem 288:28207–28216. doi:10.1074/jbc.M113.472464 PubMedCentralPubMedGoogle Scholar
  89. Tsumura M, Okada S, Sakai H, Yasunaga S, Ohtsubo M, Murata T, Obata H, Yasumi T, Kong XF, Abhyankar A, Heike T, Nakahata T, Nishikomori R, Al-Muhsen S, Boisson-Dupuis S, Casanova JL, Alzahrani M, Shehri MA, Elghazali G, Takihara Y, Kobayashi M (2012) Dominant-negative STAT1 SH2 domain mutations in unrelated patients with Mendelian susceptibility to mycobacterial disease. Hum Mutat 33:1377–1387. doi:10.1002/humu.22113 PubMedCentralPubMedGoogle Scholar
  90. Tzarum N, Komornik N, Ben Chetrit D, Engelberg D, Livnah O (2013) DEF pocket in p38α facilitates substrate selectivity and mediates autophosphorylation. J Biol Chem 288:19537–19547. doi:10.1074/jbc.M113.464511 PubMedCentralPubMedGoogle Scholar
  91. Vihinen M (1987) Relationship of protein flexibility to thermostability. Protein Eng 1:477–480PubMedGoogle Scholar
  92. Vihinen M (2014a) Variation ontology for annotation of variation effects and mechanisms. Genome Res 24:356–364. doi:10.1101/gr.157495.113 PubMedCentralPubMedGoogle Scholar
  93. Vihinen M (2014b) Variation ontology: annotator guide. J Biomed Semant 5:9. doi:10.1186/2041-1480-5-9 Google Scholar
  94. Vihinen M, Vetrie D, Maniar HS, Ochs HD, Zhu Q, Vorechovsky I, Webster AD, Notarangelo LD, Nilsson L, Sowadski JM et al (1994) Structural basis for chromosome X-linked agammaglobulinemia: a tyrosine kinase disease. Proc Natl Acad Sci USA 91:12803–12807PubMedCentralPubMedGoogle Scholar
  95. Vitkup D, Sander C, Church GM (2003) The amino-acid mutational spectrum of human genetic disease. Genome Biol 4:R72. doi:10.1186/gb-2003-4-11-r72 PubMedCentralPubMedGoogle Scholar
  96. Vogt G, Chapgier A, Yang K, Chuzhanova N, Feinberg J, Fieschi C, Boisson-Dupuis S, Alcais A, Filipe-Santos O, Bustamante J, de Beaucoudrey L, Al-Mohsen I, Al-Hajjar S, Al-Ghonaium A, Adimi P, Mirsaeidi M, Khalilzadeh S, Rosenzweig S, de la Calle Martin O, Bauer TR, Puck JM, Ochs HD, Furthner D, Engelhorn C, Belohradsky B, Mansouri D, Holland SM, Schreiber RD, Abel L, Cooper DN, Soudais C, Casanova JL (2005) Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet 37:692–700. doi:10.1038/ng1581 PubMedGoogle Scholar
  97. Wang Z, Moult J (2001) SNPs, protein structure, and disease. Hum Mutat 17:263–270. doi:10.1002/humu.22 PubMedGoogle Scholar
  98. Weidemann W, Reinhardt A, Thate A, Horstkorte R (2011) Biochemical characterization of the M712T-mutation of the UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosaminekinase in hereditary inclusion body myopathy. Neuromuscul Disord 21:824–831. doi:10.1016/j.nmd.2011.06.004 PubMedGoogle Scholar
  99. Wilson PG (2008) Centriole inheritance. Prion 2:9–16PubMedCentralPubMedGoogle Scholar
  100. Xu B, Hua QX, Nakagawa SH, Jia W, Chu YC, Katsoyannis PG, Weiss MA (2002) A cavity-forming mutation in insulin induces segmental unfolding of a surrounding α-helix. Protein Sci 11:104–116. doi:10.1110/ps.32102 PubMedCentralPubMedGoogle Scholar
  101. Xu J, Wang S, Zhao WJ, Xi YB, Yan YB, Yao K (2012) The congenital cataract-linked A2V mutation impairs tetramer formation and promotes aggregation of βB2-crystallin. PLoS One 7:e51200. doi:10.1371/journal.pone.0051200 PubMedCentralPubMedGoogle Scholar
  102. Yamada M, Sekiguchi K (2013) Disease-associated single amino acid mutation in the calf-1 domain of integrin α3 leads to defects in its processing and cell surface expression. Biochem Biophys Res Commun 441:988–993. doi:10.1016/j.bbrc.2013.11.003 PubMedGoogle Scholar
  103. Yates CM, Sternberg MJ (2013) The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein–protein interactions. J Mol Biol 425:3949–3963. doi:10.1016/j.jmb.2013.07.012 PubMedGoogle Scholar
  104. Yin S, Ding F, Dokholyan NV (2007) Eris: an automated estimator of protein stability. Nat Methods 4:466–467. doi:10.1038/nmeth0607-466 PubMedGoogle Scholar
  105. Yu ZH, Xu J, Walls CD, Chen L, Zhang S, Zhang R, Wu L, Wang L, Liu S, Zhang ZY (2013) Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem 288:10472–10482. doi:10.1074/jbc.M113.450023 PubMedCentralPubMedGoogle Scholar
  106. Yuan D, Keeble AH, Hibbert RG, Fabiane S, Gould HJ, McDonnell JM, Beavil AJ, Sutton BJ, Dhaliwal B (2013) Ca2+-dependent structural changes in the B-cell receptor CD23 increase its affinity for human immunoglobulin E. J Biol Chem 288:21667–21677. doi:10.1074/jbc.M113.480657 PubMedCentralPubMedGoogle Scholar
  107. Yue P, Li Z, Moult J (2005) Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol 353:459–473. doi:10.1016/j.jmb.2005.08.020 PubMedGoogle Scholar
  108. Zhang Z, Miteva MA, Wang L, Alexov E (2012) Analyzing effects of naturally occurring missense mutations. Comput Math Methods Med 2012:805827. doi:10.1155/2012/805827 PubMedCentralPubMedGoogle Scholar
  109. Zhu Q, Zhang M, Rawlings DJ, Vihinen M, Hagemann T, Saffran DC, Kwan SP, Nilsson L, Smith CI, Witte ON, Chen SH, Ochs HD (1994) Deletion within the Src homology domain 3 of Bruton’s tyrosine kinase resulting in X-linked agammaglobulinemia (XLA). J Exp Med 180:461–470PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Experimental Medical ScienceLund University, BMC D10LundSweden

Personalised recommendations