Skip to main content

Characterization of ANKRD11 mutations in humans and mice related to KBG syndrome

Abstract

Mutations in ANKRD11 have recently been reported to cause KBG syndrome, an autosomal dominant condition characterized by intellectual disability (ID), behavioral problems, and macrodontia. To understand the pathogenic mechanism that relates ANKRD11 mutations with the phenotype of KBG syndrome, we studied the cellular characteristics of wild-type ANKRD11 and the effects of mutations in humans and mice. We show that the abundance of wild-type ANKRD11 is tightly regulated during the cell cycle, and that the ANKRD11 C-terminus is required for the degradation of the protein. Analysis of 11 pathogenic ANKRD11 variants in humans, including six reported in this study, and one reported in the Ankrd11 Yod/+ mouse, shows that all mutations affect the C-terminal regions and that the mutant proteins accumulate aberrantly. In silico analysis shows the presence of D-box sequences that are signals for proteasome degradation. We suggest that ANKRD11 C-terminus plays an important role in regulating the abundance of the protein, and a disturbance of the protein abundance due to the mutations leads to KBG syndrome.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Barbaric I, Perry MJ, Dear TN, Rodrigues Da Costa A, Salopek D, Marusic A, Hough T, Wells S, Hunter AJ, Cheeseman M, Brown SD (2008) An ENU-induced mutation in the Ankrd11 gene results in an osteopenia-like phenotype in the mouse mutant Yoda. Physiol Genomics 32:311–321. doi:10.1152/physiolgenomics.00116.2007

    CAS  PubMed  Article  Google Scholar 

  2. Barford D (2011) Structure, function and mechanism of the anaphase promoting complex (APC/C). Q Rev Biophys 44:153–190. doi:10.1017/S0033583510000259

    CAS  PubMed  Article  Google Scholar 

  3. Brancati F, Sarkozy A, Dallapiccola B (2006) KBG syndrome. Orphanet J Rare Dis 1:50. doi:10.1186/1750-1172-1-50

    PubMed Central  PubMed  Article  Google Scholar 

  4. Handrigan GR, Chitayat D, Lionel AC, Pinsk M, Vaags AK, Marshall CR, Dyack S, Escobar LF, Fernandez BA, Stegman JC, Rosenfeld JA, Shaffer LG, Goodenberger M, Hodge JC, Cain JE, Babul-Hirji R, Stavropoulos DJ, Yiu V, Scherer SW, Rosenblum ND (2013) Deletions in 16q24.2 are associated with autism spectrum disorder, intellectual disability and congenital renal malformation. J Med Genet 50:163–173. doi:10.1136/jmedgenet-2012-101288

    CAS  PubMed  Article  Google Scholar 

  5. Herrmann J, Pallister PD, Tiddy W, Opitz JM (1975) The KBG syndrome-a syndrome of short stature, characteristic facies, mental retardation, macrodontia and skeletal anomalies. Birth Defects Orig Artic Ser 11:7–18

    CAS  PubMed  Google Scholar 

  6. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Article  Google Scholar 

  7. Isrie M, Hendriks Y, Gielissen N, Sistermans EA, Willemsen MH, Peeters H, Vermeesch JR, Kleefstra T, Van Esch H (2012) Haploinsufficiency of ANKRD11 causes mild cognitive impairment, short stature and minor dysmorphisms. Eur J Hum Genet 20:131–133. doi:10.1038/ejhg.2011.105

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Kawabe H, Brose N (2011) The role of ubiquitylation in nerve cell development.  Nat Rev Neurosci 12(5):251–268

    CAS  PubMed  Article  Google Scholar 

  9. Khalifa M, Stein J, Grau L, Nelson V, Meck J, Aradhya S, Duby J (2013) Partial deletion of ANKRD11 results in the KBG phenotype distinct from the 16q24.3 microdeletion syndrome. Am J Med Genet A 161A:835–840. doi:10.1002/ajmg.a.35739

    PubMed  Article  Google Scholar 

  10. Kumar R, Neilsen PM, Crawford J, McKirdy R, Lee J, Powell JA, Saif Z, Martin JM, Lombaerts M, Cornelisse CJ, Cleton-Jansen AM, Callen DF (2005) FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. Cancer Res 65:11304–11313. doi:10.1158/0008-5472.CAN-05-0936

    CAS  PubMed  Article  Google Scholar 

  11. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CE, Vos YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer SW (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488. doi:10.1016/j.ajhg.2007.12.009

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Miyatake S, Murakami A, Okamoto N, Sakamoto M, Miyake N, Saitsu H, Matsumoto N (2013) A de novo deletion at 16q24.3 involving ANKRD11 in a Japanese patient with KBG syndrome. Am J Med Genet A 161A:1073–1077. doi:10.1002/ajmg.a.35661

    PubMed  Article  Google Scholar 

  13. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448. doi:10.1110/ps.03554604

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Neilsen PM, Cheney KM, Li CW, Chen JD, Cawrse JE, Schulz RB, Powell JA, Kumar R, Callen DF (2008) Identification of ANKRD11 as a p53 coactivator. J Cell Sci 121:3541–3552. doi:10.1242/jcs.026351

    CAS  PubMed  Article  Google Scholar 

  15. Sacharow S, Li D, Fan YS, Tekin M (2012) Familial 16q24.3 microdeletion involving ANKRD11 causes a KBG-like syndrome. Am J Med Genet A 158A:547–552. doi:10.1002/ajmg.a.34436

    PubMed  Article  Google Scholar 

  16. Sirmaci A, Spiliopoulos M, Brancati F, Powell E, Duman D, Abrams A, Bademci G, Agolini E, Guo S, Konuk B, Kavaz A, Blanton S, Digilio MC, Dallapiccola B, Young J, Zuchner S, Tekin M (2011) Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am J Hum Genet 89:289–294. doi:10.1016/j.ajhg.2011.06.007

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Skjei KL, Martin MM, Slavotinek AM (2007) KBG syndrome: report of twins, neurological characteristics, and delineation of diagnostic criteria. Am J Med Genet A 143:292–300. doi:10.1002/ajmg.a.31597

    Article  Google Scholar 

  18. Spengler S, Oehl-Jaschkowitz B, Begemann M, Hennes P, Zerres K, Eggermann T (2013) Haploinsufficiency of ANKRD11 (16q24.3) is not obligatorily associated with cognitive impairment but shows a clinical overlap with Silver–Russell syndrome. Mol Syndromol 4:246–249. doi:10.1159/000351765

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Tai HC, Schuman EM (2008) Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 11:826–838

    Article  Google Scholar 

  20. Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW (2008) An in vivo map of the yeast protein interactome. Science 320:1465–1470. doi:10.1126/science.1153878

    CAS  PubMed  Article  Google Scholar 

  21. Walz K, Caratini-Rivera S, Bi W, Fonseca P, Mansouri DL, Lynch J, Vogel H, Noebels JL, Bradley A, Lupski JR (2003) Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 23:3646–3655

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Willemsen MH, Fernandez BA, Bacino CA, Gerkes E, de Brouwer AP, Pfundt R, Sikkema-Raddatz B, Scherer SW, Marshall CR, Potocki L, van Bokhoven H, Kleefstra T (2010) Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome. Eur J Hum Genet 18:429–435. doi:10.1038/ejhg.2009.192

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Wysocka J, Reilly PT, Herr W (2001) Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells. Mol Cell Biol 21:3820–3829. doi:10.1128/MCB.21.11.3820-3829.2001

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Zhang A, Yeung PL, Li CW, Tsai SC, Dinh GK, Wu X, Li H, Chen JD (2004) Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators. J Biol Chem 279:33799–33805. doi:10.1074/jbc.M403997200

    CAS  PubMed  Article  Google Scholar 

  25. Zhang A, Li CW, Chen JD (2007) Characterization of transcriptional regulatory domains of ankyrin repeat cofactor-1. Biochem Biophys Res Commun 358:1034–1040. doi:10.1016/j.bbrc.2007.05.017

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Karen Neagley for the administrative support and the English proofreading of the manuscript, Professor Stephen Michnick for the PCA expression constructs, and Dr. Raman Sharma for his useful discussions. This work was partially funded by the Hayward Foundation and NHMRC Project Grant APP1009452.

Conflict of interest

The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Katherina Walz or Mustafa Tekin.

Additional information

K. Walz and D. Cohen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8098 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walz, K., Cohen, D., Neilsen, P.M. et al. Characterization of ANKRD11 mutations in humans and mice related to KBG syndrome. Hum Genet 134, 181–190 (2015). https://doi.org/10.1007/s00439-014-1509-2

Download citation

Keywords

  • Intellectual Disability
  • Intellectual Disability
  • Nocodazole
  • Yellow Fluorescent Protein
  • Angelman Syndrome