Skip to main content

Advertisement

Log in

An argument for mechanism-based statistical inference in cancer

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Cancer is perhaps the prototypical systems disease, and as such has been the focus of extensive study in quantitative systems biology. However, translating these programs into personalized clinical care remains elusive and incomplete. In this perspective, we argue that realizing this agenda—in particular, predicting disease phenotypes, progression and treatment response for individuals—requires going well beyond standard computational and bioinformatics tools and algorithms. It entails designing global mathematical models over network-scale configurations of genomic states and molecular concentrations, and learning the model parameters from limited available samples of high-dimensional and integrative omics data. As such, any plausible design should accommodate: biological mechanism, necessary for both feasible learning and interpretable decision making; stochasticity, to deal with uncertainty and observed variation at many scales; and a capacity for statistical inference at the patient level. This program, which requires a close, sustained collaboration between mathematicians and biologists, is illustrated in several contexts, including learning biomarkers, metabolism, cell signaling, network inference and tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham G, Kowalczyk A, Loi S, Haviv I, Zobel J (2010) Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context. BMC Bioinform 11:277. doi:10.1186/1471-2105-11-277

    Article  Google Scholar 

  • Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using init. PLoS Comput Biol 8(5):e1002518. doi:10.1371/journal.pcbi.1002518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Altman R (2012) Translational bioinformatics: linking the molecular world to the clinical world. Clin Pharmacol Ther 91(6):994–1000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Altman RB, Kroemer Ho K, McCarty CA et al (2011) Pharmacogenomics: will the promise be fulfilled. Nat Rev 12:69–73

  • Anderson AR, Tomlin CJ, Couch J, Gallahan D (2013) Mathematics of the integrative cancer biology program. Interface Focus 3(4):20130023

    Article  PubMed Central  Google Scholar 

  • Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8(1):1–12. URL http://www.ncbi.nlm.nih.gov/pubmed/13172380

  • Armitage P, Doll R (1957) A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer 11(2):161–169. URL http://www.ncbi.nlm.nih.gov/pubmed/13460138

  • Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1(1):2

    Article  PubMed Central  PubMed  Google Scholar 

  • Barrett CL, Price ND, Palsson BO (2006) Network-level analysis of metabolic regulation in the human red blood cell using random sampling and singular value decomposition. BMC Bioinform 7:132. doi:10.1186/1471-2105-7-132

    Article  Google Scholar 

  • Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW, Velculescu VE, Vogelstein B, Nowak MA (2007) Genetic progression and the waiting time to cancer. PLoS Comput Biol 3(11):e225. doi:10.1371/journal.pcbi.0030225. URL http://www.ncbi.nlm.nih.gov/pubmed/17997597

  • Bender R, Knauer M, Rutgers E, Glas A, de Snoo FA et al (2009) The 70-gene profile and chemotherapy benefit in 1,600 breast cancer patients. J Clin Oncol 27(18 Suppl):512

    Google Scholar 

  • Binder H, Schumacher M (2009) Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinform 10:18. doi:10.1186/1471-2105-10-18

    Article  Google Scholar 

  • Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422. doi:10.1038/msb.2010.68

    Article  PubMed Central  PubMed  Google Scholar 

  • Boulesteix AL, Sauerbrei W (2011) Added predictive value of high-throughput molecular data to clinical data and its validation. Brief Bioinform 12(3):215–229

    Article  PubMed  Google Scholar 

  • Boulesteix AL, Tutz G, Strimmer K (2003) A cart-based approach to discover emerging patterns in microarray data. Bioinformatics 19(18):2465–2472

  • Boveri T (2008) Concerning the origin of malignant tumours by theodor boveri. translated and annotated by henry harris. J Cell Sci 121(Suppl 1):1–84. doi:10.1242/jcs.025742. URL http://www.ncbi.nlm.nih.gov/pubmed/18089652

  • Brenner S (2010) Sequences and consequences. Philos Trans R Soc Lond B Biol Sci 365(1537):207–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Butte AJ (2008) Translational bioinformatics: coming of age. J Am Med Inform Assoc 15(6):709–714

    Article  PubMed Central  PubMed  Google Scholar 

  • Butte AJ, Kohane IS (2003) Relevance networks: a first step toward finding genetic regulatory networks within microarray data. In: Parmigiani G, Garrett ES, Irizarry RA, Zeger SL (eds) The analysis of gene expression data, pp 428–446

  • Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS (2000) Discovering functional relationships between rna expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci 97(22):12182–12186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107(41):17845–17850. doi:10.1073/pnas.1005139107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandrasekaran S, Price ND (2013) Metabolic constraint-based refinement of transcriptional regulatory networks. PLoS Comput Biol 9(12):e1003370. doi:10.1371/journal.pcbi.1003370

    Article  PubMed Central  PubMed  Google Scholar 

  • Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems analysis of metabolism in the pathogenic trypanosomatid leishmania major. Mol Syst Biol 4:177. doi:10.1038/msb.2008.15. URL http://www.ncbi.nlm.nih.gov/pubmed/18364711

  • Chen X, Wang L, Ishwaran H (2010) An integrative pathway-based clinical-genomic model for cancer survival prediction. Stat Probab Lett 80(17–18):1313–1319. doi:10.1016/j.spl.2010.04.011

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen JE (2004) Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better. PLoS Biol 2(12):e439

    Article  PubMed Central  PubMed  Google Scholar 

  • Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987):92–96. doi:10.1038/nature02456

    Article  CAS  PubMed  Google Scholar 

  • Croce CM (2009) Causes and consequences of microrna dysregulation in cancer. Nat Rev Genet 10(10):704–714. doi:10.1038/nrg2634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cronin M, Sangli C, Liu ML, Pho M, Dutta D, Nguyen A, Jeong J, Wu J, Langone KC, Watson D (2007) Analytical validation of the oncotype dx genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem 53(6):1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Dettling M, Buhlmann P (2003) Boosting for tumor classification with gene expression data. Bioinformatics 19(9):1061–1069. URL http://www.ncbi.nlm.nih.gov/pubmed/12801866

  • Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B (2012) The molecular evolution of acquired resistance to targeted egfr blockade in colorectal cancers. Nature 486(7404):537–540. doi:10.1038/nature11219. URL http://www.ncbi.nlm.nih.gov/pubmed/22722843

  • Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

    Article  CAS  Google Scholar 

  • Durrett R, Moseley S (2010) Evolution of resistance and progression to disease during clonal expansion of cancer. Theor Popul Biol 77(1):42–48. doi:10.1016/j.tpb.2009.10.008. URL http://www.ncbi.nlm.nih.gov/pubmed/19896491

  • Eddy JA, Hood L, Price ND, Geman D (2010) Identifying tightly regulated and variably expressed networks by differential rank conservation (dirac). PLoS Comput Biol 6(5):e1000792. doi:10.1371/journal.pcbi.1000792

  • Edelman LB, Toia G, Geman D, Zhang W, Price ND (2009) Two-transcript gene expression classifiers in the diagnosis and prognosis of human diseases. BMC Genomics. doi:10.1186/1471-2164-10-583

  • Eisen MB, Spellman PT, Brown PO (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95(25):14863–14868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans JP, Meslin EM, Marteau TM, Caulfield T (2011) Deflating the genomic bubble. Science 331:861–862

    Article  CAS  PubMed  Google Scholar 

  • Fisher JC, Hollomon JH (1951) A hypothesis for the origin of cancer foci. Cancer 4(5):916–918. URL http://www.ncbi.nlm.nih.gov/pubmed/14879355

  • Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501. doi:10.1038/msb.2011.35

    Article  PubMed Central  PubMed  Google Scholar 

  • Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, Kalna G, Tomlinson IPM, Pollard PJ, Watson DG, Deberardinis RJ, Shlomi T, Ruppin E, Gottlieb E (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477(7363):225–228. doi:10.1038/nature10363

    Article  CAS  PubMed  Google Scholar 

  • Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303(5659):799–805

    Article  CAS  PubMed  Google Scholar 

  • Geman D, d’Avignon C, Naiman D et al (2004) Gene expression comparisons for class prediction in cancer studies. In: Proceedings 36th symposium on the interface: computing science and statistics

  • Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias variance dilemma. Neural Comput 4(1):1–58

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Hartemink AJ et al (2005) Reverse engineering gene regulatory networks. Nat Biotechnol 23(5):554–555

    Article  CAS  PubMed  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Hobert O (2008) Gene regulation by transcription factors and micrornas. Science 319(5871):1785–1786. doi:10.1126/science.1151651

    Article  CAS  PubMed  Google Scholar 

  • Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643

    Article  CAS  PubMed  Google Scholar 

  • Hood L, Price ND (2014) Demystifying disease, democratizing health care. Sci Transl Med 6(225):225ed5

    Article  PubMed  Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2(1):343–372

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi N, Palsson BO (2006) Systems biology of SNPs. Mol Syst Biol 2:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Jamshidi N, Palsson BO (2007) Investigating the metabolic capabilities of mycobacterium tuberculosis h37rv using the in silico strain inj661 and proposing alternative drug targets. BMC Syst Biol 1:26. doi:10.1186/1752-0509-1-26. URL http://www.ncbi.nlm.nih.gov/pubmed/17555602

  • Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 18(20):5572–5584. doi:10.1158/1078-0432.CCR-12-1856

    Article  CAS  PubMed  Google Scholar 

  • Johannes M, Brase JC, Fröhlich H, Gade S, Gehrmann M, Fälth M, Sültmann H, Beissbarth T (2010) Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics 26(17):2136–2144. doi:10.1093/bioinformatics/btq345

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at genomenet. Nucleic Acids Res 30(1):42–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kern SE (2012) Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res 72(23):6097–6101. doi:10.1158/0008-5472.CAN-12-3232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6):673–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8(2):1002. doi:10.1371/Journal.Pcbi375

    Google Scholar 

  • Kim YA, Wuchty S, Przytycka TM (2011) Identifying causal genes and dysregulated pathways in complex diseases. PLOS Comput Biol 7(3):e1001095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823 (1971). URL http://www.ncbi.nlm.nih.gov/pubmed/5279523

  • Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge

    Google Scholar 

  • Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31(1):2–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortés ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Lee RS, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CWM, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218 (2013). doi:10.1038/nature12213. URL http://www.ncbi.nlm.nih.gov/pubmed/23770567

  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804

    Article  CAS  PubMed  Google Scholar 

  • Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11(10):733–739. doi:10.1038/nrg2825

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Borenstein E (2013) Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci USA 110(31):12,804–12,809

  • Li C, Li H (2008) Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24(9):1175–1182. doi:10.1093/bioinformatics/btn081

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Seo JH, Stranger B, McKenna A, Pe’er I, Laframboise T, Brown M, Tyekucheva S, Freedman ML (2013) Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152(3):633–641. doi:10.1016/j.cell.2012.12.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XJ, Hayward C, Fong PY, Dominguez M, Hunsucker SW, Lee LW, McLean M, Law S, Butler H, Schirm M, Gingras O, Lamontagne J, Allard R, Chelsky D, Price ND, Lam S, Massion PP, Pass H, Rom WN, Vachani A, Fang KC, Hood L, Kearney P (2013) A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med 5(207):207ra142. doi:10.1126/scitranslmed.3007013. URL http://www.ncbi.nlm.nih.gov/pubmed/24132637

  • Liu KQ, Liu ZP, Hao JK, Chen L, Zhao XM (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinform 13:126

    Article  Google Scholar 

  • Liu Y, Koyuturk M, Barnholtz-Sloan JS, Chance MR (2012) Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases. BMC Syst Biol 6:65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lottaz C, Spang R (2005) Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data. Bioinformatics 21(9):1971–1978. doi:10.1093/bioinformatics/bti292

    Article  CAS  PubMed  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511. URL http://www.ncbi.nlm.nih.gov/pubmed/17247100

  • Maathuis MH, Colombo D, Kalisch M, Bühlmann P (2010) Predicting causal effects in large-scale systems from observational data. Nat Methods 7(4):247–248

    Article  CAS  PubMed  Google Scholar 

  • Maathuis MH, Kalisch M, Bühlmann P et al (2009) Estimating high-dimensional intervention effects from observational data. Ann Stat 37(6A):3133–3164

    Article  Google Scholar 

  • Marchionni L, Wilson RF, Wolff AC, Marinopoulos S, Parmigiani G, Bass EB, Goodman SN (2008) Systematic review: gene expression profiling assays in early stage breast cancer. Ann Intern Med 148(5):358–369

    Article  PubMed  Google Scholar 

  • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7

    Article  Google Scholar 

  • Mendell JT (2005) Micrornas: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4(9):1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Milne CB, Kim PJ, Eddy JA, Price ND (2009) Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J 4(12):1653–1670. doi:10.1002/biot.200900234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neapolitan RE et al (2004) Learning bayesian networks, vol 1. Prentice Hall, Upper Saddle River

  • Ng S, Collisson EA, Sokolov A, Goldstein T, Gonzalez-Perez A, Lopez-Bigas N, Benz C, Haussler D, Stuart JM (2012) Paradigm-shift predicts the function of mutations in multiple cancers using pathway impact analysis. Bioinformatics 28(18):i640–i646. doi: 10.1093/bioinformatics/bts40210.1093/bioinformatics/bts402. URL http://www.ncbi.nlm.nih.gov/pubmed/22962493.

  • Nordling CO (1953) A new theory on cancer-inducing mechanism. Br J Cancer 7(1):68–72 (1953). URL http://www.ncbi.nlm.nih.gov/pubmed/13051507

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28. URL http://www.ncbi.nlm.nih.gov/pubmed/959840

  • Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320. doi:10.1038/msb.2009.77. URL http://www.ncbi.nlm.nih.gov/pubmed/19888215

  • Ochs MF, Farrar JE, Considine M, Wei Y, Meshinchi S, Arceci RJ (2014) Outlier analysis and top scoring pair for integrated data analysis and biomarker discovery. IEEE/ACM Trans Comput Biol Bioinform. doi:DBACF900-6B21-49D2-9D30-F333A1E9CED0

  • Ochs MF, Rink L, Tarn C, Mburu S, Taguchi T, Eisenberg B, Godwin AK (2009) Detection of treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Res 69(23):9125–9132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Omenn G, DeAngelis C, DeMets D, Fleming T, Geller G, Gray J, Hayes D, Henderson C, Kessler L, Lapidus S, Leonard D, Moses H, Pao W, Pentz R, Price ND, Quackenbush J, Railey E, Ransohoff D, Reese E, Witten D (2012) Evolution of translational omics: lessons learned and the path forward. Institute of Medicine Report

  • Paik S (2011) Is gene array testing to be considered routine now? Breast 20(Suppl 3):S87–S91. doi:10.1016/S0960-9776(11)70301-0

    Article  PubMed  Google Scholar 

  • Pan W, Xie B, Shen X (2010) Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66(2):474–484. doi:10.1111/j.1541-0420.2009.01296.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SKN, Shinjo SMO, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. doi:10.1126/science.1164382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patnaik SK, Kannisto E, Knudsen S, Yendamuri S (2010) Evaluation of microrna expression profiles that may predict recurrence of localized stage i non-small cell lung cancer after surgical resection. Cancer Res 70(1):36–45

    Article  CAS  PubMed  Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo

  • Pearl J (2000) Causality: models, reasoning and inference, vol 29. Cambridge University Press, Cambridge

    Google Scholar 

  • Pe’er D, Hacohen N (2011) Principles and strategies for developing network models in cancer. Cell 144(6):864–873

    Article  PubMed Central  PubMed  Google Scholar 

  • Porzelius C, Johannes M, Binder H, Beissbarth T (2011) Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients. Biom J 53(2):190–201. doi:10.1002/bimj.201000155

    Article  PubMed  Google Scholar 

  • Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897. doi:10.1038/nrmicro1023

    Article  CAS  PubMed  Google Scholar 

  • Price ND, Trent J, El-Naggar AK, Cogdell D, Taylor E, Hunt KK, Pollock RE, Hood L, Shmulevich I, Zhang W (2007) Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Natl Acad Sci USA 104(9):3414–3419. doi:10.1073/Pnas.0611373104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raponi M, Lancet JE, Fan H, Dossey L, Lee G, Gojo I, Feldman EJ, Gotlib J, Morris LE, Greenberg PL, Wright JJ, Harousseau JL, Lowenberg B, Stone RM, De Porre P, Wang Y, Karp JE (2008) A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood 111(5):2589–2596. doi:10.1182/blood-2007-09-112730. URL http://www.ncbi.nlm.nih.gov/pubmed/18160667

  • Rejniak KA, Anderson AR (2012) State of the art in computational modeling of cancer. Math Med Biol 29(1):1–2

    Article  PubMed  Google Scholar 

  • Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721):523–529

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Björkegren JLM (2012) New: network-enabled wisdom in biology, medicine, and health care. Sci Transl Med 4(115):115rv1. doi:10.1126/scitranslmed.3002132

  • Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E (2011) Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the warburg effect. PLoS Comput Biol 7(3):e1002018. doi:10.1371/journal.pcbi.1002018

  • Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26(9):1003–1010. doi:10.1038/nbt.1487

    Article  CAS  PubMed  Google Scholar 

  • Simcha DM, Younes L, Aryee MJ, Geman D (2013) Identification of direction in gene networks from expression and methylation. BMC Syst Biol 7(1):118

    Article  PubMed Central  PubMed  Google Scholar 

  • Simon R (2006) Development and evaluation of therapeutically relevant predictive classifiers using gene expression profiling. J Natl Cancer Inst 98(17):1169–1171. doi:10.1093/jnci/djj364

    Article  CAS  PubMed  Google Scholar 

  • Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pitfalls in the use of dna microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95(1):14–18

    Article  CAS  PubMed  Google Scholar 

  • Staiger C, Cadot S, Kooter R, Dittrich M, Müller T, Klau GW, Wessels LFA (2012) A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer. PLoS One 7(4):e34796. doi:10.1371/journal.pone.0034796

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. doi:10.1073/pnas.0506580102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung J, Kim PJ, Ma S, Funk CC, Magis AT, Wang Y, Hood L, Geman D, Price ND (2013) Multi-study integration of brain cancer transcriptomes reveals organ-level diagnostic signatures. PLoS Comput Biol 9(7):e1003148

  • Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND (2012) Molecular signatures from omics data: from chaos to consensus. Biotechnol J 7(8):946–57. doi:10.1002/biot.201100305. URL http://www.ncbi.nlm.nih.gov/pubmed/22528809

  • Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D (2005) Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21(20):3896–3904 (2005). doi:10.1093/bioinformatics/bti631. URL http://www.ncbi.nlm.nih.gov/pubmed/16105897

  • Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Bölling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novère N, Malys N, Mazein A, Papin JA, Price ND, Selkov E Sr, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JHGM, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BØ (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419–425. doi:10.1038/nbt.2488

    Article  CAS  PubMed  Google Scholar 

  • Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99(10):6567–6572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomasetti C, Levy D (2010) An elementary approach to modeling drug resistance in cancer. Math Biosci Eng 7(4):905–918. URL http://www.ncbi.nlm.nih.gov/pubmed/21077714

  • Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA 110(6):1999–2004. doi:10.1073/pnas.1221068110. URL http://www.ncbi.nlm.nih.gov/pubmed/23345422

  • Tuncbag N, Braunstein A, Pagnani A, Huang SS, Chayes J, Borgs C, Zecchina R, Fraenkel E (2013) Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem. J Comput Biol 20(2):124–36. doi:10.1089/cmb.2012.0092. URL http://www.ncbi.nlm.nih.gov/pubmed/23383998.

  • Ulitsky I, Krishnamurthy A, Karp RM, Shamir R (2010) Degas: de novo discovery of dysregulated pathways in human diseases. PLoS One 5(10):e13367

  • Vandin F, Clay P, Upfal E, Raphael B (2012) Discovery of mutated subnetworks associated with clinical data in cancer. In: Proceedings Pacific symposium biocomputing, pp 55–66

  • Varadan V, Mittal P, Vaske CJ, Benz SC (2012) The integration of biological pathway knowledge in cancer genomics: a review of existing computational approaches. IEEE Signal Process Mag 29(1):35–50. doi:10.1109/Msp.2011.943037

    Article  Google Scholar 

  • Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu JC, Haussler D, Stuart JM (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26(12):i237–i245. doi:10.1093/bioinformatics/btq182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. doi:10.1126/science.1235122. URL http://www.ncbi.nlm.nih.gov/pubmed/23539594

  • Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 6(1):153. doi:10.1186/1752-0509-6-153

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei Z, Li H (2007) Non-parametric pathway-based regression models for analysis of genomic data. Biostatistics 8(2):265–284. doi:10.1093/biostatistics/kxl007

    Article  PubMed  Google Scholar 

  • Weichselbaum RR, Ishwaran H, Yoon T, Nuyten DSA, Baker SW, Khodarev N, Su AW, Shaikh AY, Roach P, Kreike B, Roizman B, Bergh J, Pawitan Y, de Vijver MJV, Minn AJ (2008) An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci USA 105(47):18490–18495. doi:10.1073/Pnas.0809242105

  • Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120. doi:10.1038/ng.2764

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson JL, Hemann MT, Fraenkel E, Lauffenburger DA (2013) Integrated network analyses for functional genomic studies in cancer. Semin Cancer Biol 23(4):213–218. doi:10.1016/j.semcancer.2013.06.004. URL http://www.ncbi.nlm.nih.gov/pubmed/23811269.

  • Winslow R, Trayanova N, Geman D, Miller M (2012) The emerging discipline of computational medicine. Science Transl Med 4(158):158rv11

  • Winslow RL, Trayanova N, Geman D, Miller MI (2012) Computational medicine: translating models to clinical care. Sci Transl Med 4(158):158rv11. doi:10.1126/scitranslmed.3003528

  • Wynn ML, Ventura AC, Sepulchre JA, García HJ, Merajver SD (2011) Kinase inhibitors can produce off-target effects and activate linked pathways by retroactivity. BMC Syst Biol 5:156. doi:10.1186/1752-0509-5-156

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu L, Tan AC, Naiman DQ, Geman D, Winslow RL (2005) Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data. Bioinformatics 21(20):3905–3911. doi:10.1093/bioinformatics/bti647

    Article  CAS  PubMed  Google Scholar 

  • Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B, Iacobuzio-Donahue CA (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117. doi:10.1038/nature09515. URL http://www.ncbi.nlm.nih.gov/pubmed/20981102

  • Yeang CH, Ramaswamy S, Tamayo P, Mukherjee S, Rifkin RM, Angelo M, Reich M, Lander E, Mesirov J, Golub T (2001) Molecular classification of multiple tumor types. Bioinformatics 17(Suppl 1):S316–S322. URL http://www.ncbi.nlm.nih.gov/pubmed/11473023

  • Yoruk E, Ochs MF, Geman D, Younes L (2011) A comprehensive statistical model for cell signaling. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 8(3):592–606

    Article  Google Scholar 

  • Zhang D, Tai LK, Wong LL, Chiu LL, Sethi SK, Koay ES (2005) Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in her-2/neu-positive breast cancer*. Mol Cell Proteomics 4(11):1686–1696

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Logothetis CJ, Gorlov IP (2010) Usefulness of the top-scoring pairs of genes for prediction of prostate cancer progression. Prostate Cancer Prostateic Dis 13(3):252–259 (2010). doi:10.1038/pcan.2010.9. URL http://www.ncbi.nlm.nih.gov/pubmed/20386565

  • Zhu Y, Shen X, Pan W (2009) Network-based support vector machine for classification of microarray samples. BMC Bioinform 10(Suppl 1):S21. doi:10.1186/1471-2105-10-S1-S21

Download references

Acknowledgments

The work of D. Geman and L. Younes was partially supported by the National Science Foundation under NSF DMS1228248. N. Price’s work was supported by a Camille Dreyfus Teacher-Scholar Award and NIH 2P50GM076547.

Author contributions

D.G. supervised the project. All authors wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Geman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geman, D., Ochs, M., Price, N.D. et al. An argument for mechanism-based statistical inference in cancer. Hum Genet 134, 479–495 (2015). https://doi.org/10.1007/s00439-014-1501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-014-1501-x

Keywords

Navigation