Skip to main content

A comparison of type 2 diabetes risk allele load between African Americans and European Americans

Abstract

The prevalence of type 2 diabetes (T2D) is greater in populations of African descent compared to European-descent populations. Genetic risk factors may underlie the disparity in disease prevalence. Genome-wide association studies (GWAS) have identified >60 common genetic variants that contribute to T2D risk in populations of European, Asian, African and Hispanic descent. These studies have not comprehensively examined population differences in cumulative risk allele load. To investigate the relationship between risk allele load and T2D risk, 46 T2D single nucleotide polymorphisms (SNPs) in 43 loci from GWAS in European, Asian, and African-derived populations were genotyped in 1,990 African Americans (n = 963 T2D cases, n = 1,027 controls) and 1,644 European Americans (n = 719 T2D cases, n = 925 controls) ascertained and recruited using a common protocol in the southeast United States. A genetic risk score (GRS) was constructed from the cumulative risk alleles for each individual. In African American subjects, risk allele frequencies ranged from 0.024 to 0.964. Risk alleles from 26 SNPs demonstrated directional consistency with previous studies, and 3 SNPs from ADAMTS9, TCF7L2, and ZFAND6 showed nominal evidence of association (p < 0.05). African American individuals carried 38–67 (53.7 ± 4.0, mean ± SD) risk alleles. In European American subjects, risk allele frequencies ranged from 0.084 to 0.996. Risk alleles from 36 SNPs demonstrated directional consistency, and 10 SNPs from BCL11A, PSMD6, ADAMTS9, ZFAND3, ANK1, CDKN2A/B, TCF7L2, PRC1, FTO, and BCAR1 showed evidence of association (p < 0.05). European American individuals carried 38–65 (50.9 ± 4.4) risk alleles. African Americans have a significantly greater burden of 2.8 risk alleles (p = 3.97 × 10−89) compared to European Americans. However, GRS modeling showed that cumulative risk allele load was associated with risk of T2D in European Americans, but only marginally in African Americans. This result suggests that there are ethnic-specific differences in genetic architecture underlying T2D, and that these differences complicate our understanding of how risk allele load impacts disease susceptibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bento JL, Palmer ND, Zhong M et al (2008) Heterogeneity in gene loci associated with type 2 diabetes on human chromosome 20q13.1. Genomics 92:226–234. doi:10.1016/j.ygeno.2008.06.004

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Buetow KH, Edmonson M, MacDonald R et al (2001) High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci 98:581–584. doi:10.1073/pnas.021506298

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Centers for Disease Control and Prevention (2012) Diabetes Report Card 2012. Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta

  4. Cheng C-Y, Reich D, Haiman CA et al (2012) African ancestry and its correlation to type 2 diabetes in African Americans: a genetic admixture analysis in three US population cohorts. PLoS One 7:e32840. doi:10.1371/journal.pone.0032840

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Cho YS, Chen C-H, Hu C et al (2012) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44:67–72. doi:10.1038/ng.1019

    CAS  Article  Google Scholar 

  6. Cooke JN, Bostrom MA, Hicks PJ et al (2012a) Polymorphisms in MYH9 are associated with diabetic nephropathy in European Americans. Nephrol Dial Transplant 27:1505–1511. doi:10.1093/ndt/gfr522

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Cooke JN, Ng MCY, Palmer ND et al (2012b) Genetic risk assessment of type 2 diabetes-associated polymorphisms in African Americans. Diabetes Care 35:287–292. doi:10.2337/dc11-0957

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Cui B, Zhu X, Xu M et al (2011) A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese. PLoS One 6:e22353. doi:10.1371/journal.pone.0022353

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336. doi:10.1126/science.1142358

    CAS  PubMed  Article  Google Scholar 

  10. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–244. doi:10.1038/ng.2897

    Article  Google Scholar 

  11. Freedman BI, Yu H, Anderson PJ et al (2000) Genetic analysis of nitric oxide and endothelin in end-stage renal disease. Nephrol Dial Transplant 15:1794–1800

    CAS  PubMed  Article  Google Scholar 

  12. Haiman CA, Fesinmeyer MD, Spencer KL et al (2012) Consistent directions of effect for established type 2 diabetes risk variants across populations: the population architecture using Genomics and Epidemiology (PAGE) Consortium. Diabetes 61:1642–1647. doi:10.2337/db11-1296

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Harris MI, Flegal KM, Cowie CC et al (1998) Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in US adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 21:518–524

    CAS  PubMed  Article  Google Scholar 

  14. Hivert M-F, Jablonski KA, Perreault L et al (2011) Updated genetic score based on 34 confirmed type 2 diabetes loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60:1340–1348. doi:10.2337/db10-1119

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. Huang J, Ellinghaus D, Franke A et al (2012) 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data. Eur J Hum Genet 20:801–805. doi:10.1038/ejhg.2012.3

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Imamura M, Maeda S, Yamauchi T et al (2012) A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum Mol Genet 21:3042–3049. doi:10.1093/hmg/dds113

    CAS  PubMed  Article  Google Scholar 

  17. Johnson AD, Handsaker RE, Pulit SL et al (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938–2939. doi:10.1093/bioinformatics/btn564

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Kooner JS, Saleheen D, Sim X et al (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet 43:984–989. doi:10.1038/ng.921

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Lewis JP, Palmer ND, Hicks PJ et al (2008) Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes 57:2220–2225. doi:10.2337/db07-1319

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232. doi:10.1056/NEJMoa0801869

    CAS  PubMed  Article  Google Scholar 

  21. Maskarinec G, Grandinetti A, Matsuura G et al (2009) Diabetes prevalence and body mass index differ by ethnicity: the multiethnic cohort. Ethn Dis 19:49–55

    PubMed Central  PubMed  Google Scholar 

  22. McDonough CW, Palmer ND, Hicks PJ et al (2011) A genome wide association study for diabetic nephropathy genes in African Americans. Kidney Int 79:563–572. doi:10.1038/ki.2010.467

    PubMed Central  PubMed  Article  Google Scholar 

  23. Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219. doi:10.1056/NEJMoa0804742

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990. doi:10.1038/ng.2383

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Ng MCY, Shriner D, Chen BH et al (2014) Meta-analysis of genome-wide association studies in african americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet 10:e1004517. doi:10.1371/journal.pgen.1004517

  26. Ng MCY, Saxena R, Li J et al (2013) Transferability and fine mapping of type 2 diabetes loci in African Americans: the candidate gene association resource plus study. Diabetes 62:965–976. doi:10.2337/db12-0266

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. Palmer ND, McDonough CW, Hicks PJ et al (2012) A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One 7:e29202. doi:10.1371/journal.pone.0029202

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Parra EJ, Below JE, Krithika S et al (2011) Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia 54:2038–2046. doi:10.1007/s00125-011-2172-y

    CAS  PubMed  Article  Google Scholar 

  29. Perry JRB, Voight BF, Yengo L et al (2012) Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases. PLoS Genet 8:e1002741. doi:10.1371/journal.pgen.1002741

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Qi L, Hu FB, Hu G (2008) Genes, environment, and interactions in prevention of type 2 diabetes: a focus on physical activity and lifestyle changes. Curr Mol Med 8:519–532

    CAS  PubMed  Article  Google Scholar 

  31. Qi L, Cornelis MC, Kraft P et al (2010) Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet 19:2706–2715. doi:10.1093/hmg/ddq156

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Rung J, Cauchi S, Albrechtsen A et al (2009) Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 41:1110–1115. doi:10.1038/ng.443

    CAS  PubMed  Article  Google Scholar 

  33. Sale MM, Freedman BI, Langefeld CD et al (2004) A genome-wide scan for type 2 diabetes in African-American families reveals evidence for a locus on chromosome 6q. Diabetes 53:830–837

    CAS  PubMed  Article  Google Scholar 

  34. Shu XO, Long J, Cai Q et al (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS Genet 6:e1001127. doi:10.1371/journal.pgen.1001127

    PubMed Central  PubMed  Article  Google Scholar 

  35. Sim X, Ong RT-H, Suo C et al (2011) Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet 7:e1001363. doi:10.1371/journal.pgen.1001363

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Steinthorsdottir V, Thorleifsson G, Reynisdottir I et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775. doi:10.1038/ng2043

    CAS  PubMed  Article  Google Scholar 

  37. Takeuchi F, Serizawa M, Yamamoto K et al (2009) Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58:1690–1699. doi:10.2337/db08-1494

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Tang H, Peng J, Wang P, Risch NJ (2005) Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol 28:289–301. doi:10.1002/gepi.20064

    PubMed  Article  Google Scholar 

  39. Timpson NJ, Lindgren CM, Weedon MN et al (2009) Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes 58:505–510. doi:10.2337/db08-0906

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Tsai F-J, Yang C-F, Chen C-C et al (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 6:e1000847. doi:10.1371/journal.pgen.1000847

    PubMed Central  PubMed  Article  Google Scholar 

  41. Unoki H, Takahashi A, Kawaguchi T et al (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098–1102. doi:10.1038/ng.208

    CAS  PubMed  Article  Google Scholar 

  42. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589. doi:10.1038/ng.609

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Waters KM, Stram DO, Hassanein MT et al (2010) Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet. doi:10.1371/journal.pgen.1001078

    PubMed Central  PubMed  Google Scholar 

  44. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678. doi:10.1038/nature05911

    Article  Google Scholar 

  45. Yamauchi T, Hara K, Maeda S et al (2010) A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet 42:864–868. doi:10.1038/ng.660

    CAS  PubMed  Article  Google Scholar 

  46. Yu H, Bowden DW, Spray BJ et al (1998) Identification of human plasma kallikrein gene polymorphisms and evaluation of their role in end-stage renal disease. Hypertension 31:906–911

    CAS  PubMed  Article  Google Scholar 

  47. Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341. doi:10.1126/science.1142364

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645. doi:10.1038/ng.120

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all study participants for their time and effort. This work was supported by NIH grants R01 DK066358 and R01 DK053591 to DWB.

Conflict of interest

There are no conflicts of interest relevant to this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Donald W. Bowden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (TIFF 1116 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keaton, J.M., Cooke Bailey, J.N., Palmer, N.D. et al. A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Hum Genet 133, 1487–1495 (2014). https://doi.org/10.1007/s00439-014-1486-5

Download citation

Keywords

  • Risk Allele
  • Genetic Risk Score
  • Risk Allele Frequency
  • African American Subject
  • Weighted Genetic Risk Score