Human Genetics

, Volume 133, Issue 6, pp 727–735 | Cite as

Determining causality and consequence of expression quantitative trait loci

  • A. Battle
  • S. B. Montgomery
Review Paper


Expression quantitative trait loci (eQTLs) are currently the most abundant and systematically-surveyed class of functional consequence for genetic variation. Recent genetic studies of gene expression have identified thousands of eQTLs in diverse tissue types for the majority of human genes. Application of this large eQTL catalog provides an important resource for understanding the molecular basis of common genetic diseases. However, only now has both the availability of individuals with full genomes and corresponding advances in functional genomics provided the opportunity to dissect eQTLs to identify causal regulatory variants. Resolving the properties of such causal regulatory variants is improving understanding of the molecular mechanisms that influence traits and guiding the development of new genome-scale approaches to variant interpretation. In this review, we provide an overview of current computational and experimental methods for identifying causal regulatory variants and predicting their phenotypic consequences.


Causal Variant Genome Editing Cluster Regularly Interspaced Short Palindromic Repeat Expression Quantitative Trait Locus eQTL Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnold CD et al (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339:1074–1077PubMedCrossRefGoogle Scholar
  2. Barreiro LB et al (2012) Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 109:1204–1209PubMedCentralPubMedCrossRefGoogle Scholar
  3. Battle A et al (2014) Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res 24:14–24PubMedCrossRefGoogle Scholar
  4. Bauer DE et al (2013) An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342:253–257PubMedCrossRefGoogle Scholar
  5. Bell JT et al (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12:R10PubMedCentralPubMedCrossRefGoogle Scholar
  6. Berger MF et al (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24:1429–1435PubMedCrossRefGoogle Scholar
  7. Boyle AP et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22:1790–1797PubMedCentralPubMedCrossRefGoogle Scholar
  8. Brivanlou AH, Darnell JE Jr (2002) Signal transduction and the control of gene expression. Science 295:813–818PubMedCrossRefGoogle Scholar
  9. Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cheung VG et al (2010) Polymorphic cis- and trans-regulation of human gene expression. PLoS Biol 8(9):1–14Google Scholar
  11. Conde L, Bracci PM, Richardson R, Montgomery SB, Skibola CF (2013) Integrating GWAS and expression data for functional characterization of disease-associated SNPs: an application to follicular lymphoma. Am J Hum Genet 92:126–130PubMedCentralPubMedCrossRefGoogle Scholar
  12. Degner JF et al (2012) DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482:390–394PubMedCentralPubMedCrossRefGoogle Scholar
  13. Dimas AS et al (2009) Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325:1246–1250PubMedCentralPubMedCrossRefGoogle Scholar
  14. Emilsson V et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428PubMedCrossRefGoogle Scholar
  15. ENCODE Project Consortium et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816Google Scholar
  16. ENCODE Project Consortium et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74Google Scholar
  17. Fehrmann RS et al (2011) Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet 7:e1002197PubMedCentralPubMedCrossRefGoogle Scholar
  18. Gaffney DJ et al (2012) Dissecting the regulatory architecture of gene expression QTLs. Genome Biol 13:R7PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gagneur J et al (2013) Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype. PLoS Genet 9:e1003803PubMedCentralPubMedCrossRefGoogle Scholar
  20. Genomes Project Consortium et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65CrossRefGoogle Scholar
  21. Gilbert LA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451PubMedCrossRefGoogle Scholar
  22. Goode DL et al (2010) Evolutionary constraint facilitates interpretation of genetic variation in resequenced human genomes. Genome Res 20:301–310PubMedCentralPubMedCrossRefGoogle Scholar
  23. Griffith OL et al (2008) ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res 36:D107–D113PubMedCentralPubMedCrossRefGoogle Scholar
  24. Grundberg E et al (2011) Global analysis of the impact of environmental perturbation on cis-regulation of gene expression. PLoS Genet 7:e1001279PubMedCentralPubMedCrossRefGoogle Scholar
  25. GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585Google Scholar
  26. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529PubMedCentralPubMedCrossRefGoogle Scholar
  27. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44:955–959PubMedCentralPubMedCrossRefGoogle Scholar
  28. Innocenti F et al (2011) Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet 7:e1002078PubMedCentralPubMedCrossRefGoogle Scholar
  29. International HapMap 3 Consortium et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58CrossRefGoogle Scholar
  30. Jinek M et al (2013) RNA-programmed genome editing in human cells. Elife 2:e00471PubMedCentralPubMedCrossRefGoogle Scholar
  31. Jolma A et al (2013) DNA-binding specificities of human transcription factors. Cell 152:327–339PubMedCrossRefGoogle Scholar
  32. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55PubMedCentralPubMedCrossRefGoogle Scholar
  33. Karczewski KJ et al (2013) Systematic functional regulatory assessment of disease-associated variants. Proc Natl Acad Sci USA 110:9607–9612PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kasowski M et al (2013) Extensive variation in chromatin states across humans. Science 342:750–752PubMedCrossRefGoogle Scholar
  35. Katzman S et al (2007) Human genome ultraconserved elements are ultraselected. Science 317:915PubMedCrossRefGoogle Scholar
  36. Keinan A, Clark AG (2012) Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336:740–743PubMedCentralPubMedCrossRefGoogle Scholar
  37. Khan Z et al (2013) Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342:1100–1104PubMedCrossRefGoogle Scholar
  38. Kheradpour P et al (2013) Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res 23:800–811PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kilpinen H et al (2013) Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342:744–747PubMedCrossRefGoogle Scholar
  40. King DC et al (2005) Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res 15:1051–1060PubMedCentralPubMedCrossRefGoogle Scholar
  41. Kudaravalli S, Veyrieras JB, Stranger BE, Dermitzakis ET, Pritchard JK (2009) Gene expression levels are a target of recent natural selection in the human genome. Mol Biol Evol 26:649–658PubMedCentralPubMedCrossRefGoogle Scholar
  42. Lappalainen T et al (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501:506–511PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lawrence R et al (2005) Genetically indistinguishable SNPs and their influence on inferring the location of disease-associated variants. Genome Res 15:1503–1510PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lee SI et al (2009) Learning a prior on regulatory potential from eQTL data. PLoS Genet 5:e1000358PubMedCentralPubMedCrossRefGoogle Scholar
  45. Li X, Quon G, Lipshitz HD, Morris Q (2010) Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA 16:1096–1107PubMedCentralPubMedCrossRefGoogle Scholar
  46. Liang L et al (2013) A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res 23:716–726PubMedCentralPubMedCrossRefGoogle Scholar
  47. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedCentralPubMedCrossRefGoogle Scholar
  48. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176PubMedCrossRefGoogle Scholar
  49. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511PubMedCrossRefGoogle Scholar
  50. Maurano MT et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–1195PubMedCentralPubMedCrossRefGoogle Scholar
  51. McVicker G et al (2013) Identification of genetic variants that affect histone modifications in human cells. Science 342:747–749PubMedCentralPubMedCrossRefGoogle Scholar
  52. Melzer D et al (2008) A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet 4:e1000072PubMedCentralPubMedCrossRefGoogle Scholar
  53. Montgomery SB, Griffith OL, Schuetz JM, Brooks-Wilson A, Jones SJ (2007) A survey of genomic properties for the detection of regulatory polymorphisms. PLoS Comput Biol 3:e106PubMedCentralPubMedCrossRefGoogle Scholar
  54. Montgomery SB et al (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464:773–777PubMedCrossRefGoogle Scholar
  55. Montgomery SB, Lappalainen T, Gutierrez-Arcelus M, Dermitzakis ET (2011) Rare and common regulatory variation in population-scale sequenced human genomes. PLoS Genet 7:e1002144PubMedCentralPubMedCrossRefGoogle Scholar
  56. Myers AJ et al (2007) A survey of genetic human cortical gene expression. Nat Genet 39:1494–1499PubMedCrossRefGoogle Scholar
  57. Nelson MR et al (2012) An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337:100–104PubMedCrossRefGoogle Scholar
  58. Nica AC et al (2010) Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet 6:e1000895PubMedCentralPubMedCrossRefGoogle Scholar
  59. Nica AC et al (2011) The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet 7:e1002003PubMedCentralPubMedCrossRefGoogle Scholar
  60. Nicolae DL et al (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6:e1000888PubMedCentralPubMedCrossRefGoogle Scholar
  61. Pennacchio LA et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444:499–502PubMedCrossRefGoogle Scholar
  62. Pickrell JK et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464:768–772PubMedCentralPubMedCrossRefGoogle Scholar
  63. Portales-Casamar E et al (2010) JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 38:D105–D110PubMedCentralPubMedCrossRefGoogle Scholar
  64. Ran FA et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308PubMedCentralPubMedCrossRefGoogle Scholar
  65. Ritchie GR, Dunham I, Zeggini E, Flicek P (2014) Functional annotation of noncoding sequence variants. Nat Methods 11(3):294–296PubMedCrossRefGoogle Scholar
  66. Rozowsky J et al (2011) AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol Syst Biol 7:522PubMedCentralPubMedCrossRefGoogle Scholar
  67. Schadt EE et al (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107PubMedCentralPubMedCrossRefGoogle Scholar
  68. Smith RP et al (2013) Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat Genet 45:1021–1028PubMedCentralPubMedCrossRefGoogle Scholar
  69. Spielman RS et al (2007) Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 39:226–231PubMedCentralPubMedCrossRefGoogle Scholar
  70. Stenson PD et al (2009) The human gene mutation database: 2008 update. Genome Med 1:13PubMedCentralPubMedCrossRefGoogle Scholar
  71. Storey JD et al (2007) Gene-expression variation within and among human populations. Am J Hum Genet 80:502–509PubMedCentralPubMedCrossRefGoogle Scholar
  72. Stranger BE et al (2012) Patterns of cis regulatory variation in diverse human populations. PLoS Genet 8:e1002639PubMedCentralPubMedCrossRefGoogle Scholar
  73. Sun W, Hu Y (2013) eQTL Mapping Using RNA-seq Data. Stat Biosci 5:198–219PubMedCrossRefGoogle Scholar
  74. Tennessen JA et al (2012) Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:64–69PubMedCentralPubMedCrossRefGoogle Scholar
  75. van Nas A et al (2010) Expression quantitative trait loci: replication, tissue- and sex-specificity in mice. Genetics 185:1059–1068PubMedCentralPubMedCrossRefGoogle Scholar
  76. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10:252–263PubMedCrossRefGoogle Scholar
  77. Veyrieras JB et al (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 4:e1000214PubMedCentralPubMedCrossRefGoogle Scholar
  78. Wang J et al (2012) Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22:1798–1812PubMedCentralPubMedCrossRefGoogle Scholar
  79. Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934PubMedCentralPubMedCrossRefGoogle Scholar
  80. Westra HJ et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45:1238–1243PubMedCentralPubMedCrossRefGoogle Scholar
  81. White MA, Myers CA, Corbo JC, Cohen BA (2013) Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks. Proc Natl Acad Sci USA 110:11952–11957PubMedCentralPubMedCrossRefGoogle Scholar
  82. Wu L et al (2013) Variation and genetic control of protein abundance in humans. Nature 499:79–82PubMedCentralPubMedCrossRefGoogle Scholar
  83. Zaitlen N, Pasaniuc B, Gur T, Ziv E, Halperin E (2010) Leveraging genetic variability across populations for the identification of causal variants. Am J Hum Genet 86:23–33PubMedCentralPubMedCrossRefGoogle Scholar
  84. Zhang K et al (2009) Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nat Methods 6:613–618PubMedCentralPubMedCrossRefGoogle Scholar
  85. Zhou T et al (2013) DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale. Nucleic Acids Res 41:W56–W62PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of GeneticsStanford University School of MedicineStanfordUSA
  3. 3.Department of PathologyStanford University School of MedicineStanfordUSA

Personalised recommendations