Skip to main content

Advertisement

Log in

The impact of microRNA expression on cellular proliferation

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

As an important class of non-coding regulatory RNAs, microRNAs (miRNAs) play a key role in a range of biological processes. These molecules serve as post-transcriptional regulators of gene expression and their regulatory activity has been implicated in disease pathophysiology and pharmacological traits. We sought to investigate the impact of miRNAs on cellular proliferation to gain insight into the molecular basis of complex traits that depend on cellular growth, including, most prominently, cancer. We examined the relationship between miRNA expression and intrinsic cellular growth (iGrowth) in the HapMap lymphoblastoid cell lines derived from individuals of different ethnic backgrounds. We found a substantial enrichment for miRNAs (53 miRNAs, FDR < 0.05) correlated with cellular proliferation in pooled CEU (Caucasian of northern and western European descent) and YRI (individuals from Ibadan, Nigeria) samples. Specifically, 119 miRNAs (59 %) were significantly correlated with iGrowth in YRI; of these miRNAs, 18 were correlated with iGrowth in CEU. To gain further insight into the effect of miRNAs on cellular proliferation in cancer, we showed that over-expression of miR-22, one of the top iGrowth-associated miRNAs, leads to growth inhibition in an ovarian cancer cell line (SKOV3). Furthermore, over-expression of miR-22 down-regulates the expression of its target genes (MXI1 and SLC25A37) in this ovarian cancer cell line, highlighting an miRNA-mediated regulatory network potentially important for cellular proliferation. Importantly, our study identified miRNAs that can be used as molecular targets in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

iGrowth:

Intrinsic cellular growth

LCLs:

Lymphoblastoid cell lines

CEU:

Centre d’Etude du Polymorphisme Humain (CEPH) people from Utah, USA

YRI:

Yoruba people from Ibadan, Nigeria

MEM:

Mixed effects model averaging

FDR:

False discovery rate

DAVID:

Database for Annotation, Visualization and Integrated Discovery

GO:

Gene ontology

DOHH:

Deoxyhypusine hydroxylase

References

  • Bar N, Dikstein R (2010) miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS One 5:e10859

    Article  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Paradkar PN, Li L, Pierce EL, Langer NB, Takahashi-Makise N, Hyde BB, Shirihai OS, Ward DM, Kaplan J et al (2009) Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc Natl Acad Sci USA 106:16263–16268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dang Y, Luo D, Rong M, Chen G (2013) Underexpression of miR-34a in hepatocellular carcinoma and its contribution towards enhancement of proliferating inhibitory effects of agents targeting c-MET. PLoS One 8:e61054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duan S, Huang RS, Zhang W, Bleibel WK, Roe CA, Clark TA, Chen TX, Schweitzer AC, Blume JE, Cox NJ et al (2008) Genetic architecture of transcript-level variation in humans. Am J Hum Genet 82:1101–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM et al (2007) A second generation **human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  • Fonseca-Sanchéz MA, Pérez-Plasencia C, Fernández-Retana J, Arechaga-Ocampo E, Marchat LA, Rodríguez-Cuevas S, Bautista-Piña V, Arellano-Anaya ZE, Flores-Pérez A, Diaz-Chávez J et al (2013) microRNA-18b is upregulated in breast cancer and modulates genes involved in cell migration. Oncol Rep 30:2399–2410

    PubMed  Google Scholar 

  • Gamazon ER, Ziliak D, Im HK, LaCroix B, Park DS, Cox NJ, Huang RS (2012) Genetic architecture of microRNA expression: implications for the transcriptome and complex traits. Am J Hum Genet 90:1046–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • González-Gugel E, Villa-Morales M, Santos J, Bueno MJ, Malumbres M, Rodríguez-Pinilla SM, Piris MÁ, Fernández-Piqueras J (2013) Down-regulation of specific miRNAs enhances the expression of the gene smoothened and contributes to T-cell lymphoblastic lymphoma development. Carcinogenesis 34(4):902–908

    Article  PubMed  Google Scholar 

  • He J, Wu J, Xu N, Xie W, Li M, Li J, Jiang Y, Yang BB, Zhang Y (2012) MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes. Nucleic Acids Res 41(1):498–508. doi:10.1093/nar/gks995

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsiao C-P, Wang D, Kaushal A, Saligan L (2013) Mitochondria-related gene expression changes are associated with fatigue in patients with nonmetastatic prostate cancer receiving external beam radiation therapy. Cancer Nurs 36(3):189–197

    Google Scholar 

  • Huang RS, Kistner EO, Bleibel WK, Shukla SJ, Dolan ME (2007) Effect of population and gender on chemotherapeutic agent-induced cytotoxicity. Mol Cancer Ther 6:31–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurlin PJ, Dezfouli S (2004) Functions of myc:max in the control of cell proliferation and tumorigenesis. Int Rev Cytol 238:183–226

    Article  CAS  PubMed  Google Scholar 

  • Huang Z-P, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X, Wang D-Z (2013) MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112:1234–1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Hwang H-W, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Im HK, Gamazon ER, Stark AL, Huang RS, Cox NJ, Dolan ME (2012) Mixed effects modeling of proliferation rates in cell-based models: consequence for pharmacogenomics and cancer. PLoS Genet 8:e1002525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imam JS, Buddavarapu K, Lee-Chang JS, Ganapathy S, Camosy C, Chen Y, Rao MK (2010) MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 29:4971–4979

    Article  CAS  PubMed  Google Scholar 

  • Kashat M, Azzouz L, Sarkar SH, Kong D, Li Y, Sarkar FH (2012) Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am J Transl Res 4:432–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaur K, Pandey AK, Srivastava S, Srivastava AK, Datta M (2011) Comprehensive miRNome and in silico analyses identify the Wnt signaling pathway to be altered in the diabetic liver. Mol Biosyst 7:3234–3244

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Thomas MP, Altschuler G, Navarro F, O’Day E, Li XL, Concepcion C, Han Y-C, Thiery J, Rajani DK et al (2011) Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7:e1002363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X-F, Yan P-J, Shao Z-M (2009) Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene 28:3937–3948

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liang S, Yu H, Zhang J, Ma D, Lu X (2010) An inhibitory effect of miR-22 on cell migration and invasion in ovarian cancer. Gynecol Oncol 119:543–548

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Jiang Y, Zhang H, Greenlee AR, Yu R, Yang Q (2010) miR-22 functions as a micro-oncogene in transformed human bronchial epithelial cells induced by anti-benzo[a]pyrene-7,8-diol-9,10-epoxide. Toxicol In Vitr 24:1168–1175

    Article  CAS  Google Scholar 

  • Morris KV, Chan SW-L, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    Article  CAS  PubMed  Google Scholar 

  • Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor α mRNA. Mol Cell Biol 29:3783–3790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras J-B, Stephens M, Gilad Y, Pritchard JK (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464:768–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puisségur M-P, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, Maurin T, Lebrigand K, Cardinaud B, Hofman V et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18:465–478

    Article  PubMed Central  PubMed  Google Scholar 

  • Qi J, Rice SJ, Salzberg AC, Runkle EA, Liao J, Zander DS, Mu D (2012) MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1. Cell Cycle 11:177–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramberg H, Alshbib A, Berge V, Svindland A, Taskén KA (2011) Regulation of PBX3 expression by androgen and Let-7d in prostate cancer. Mol Cancer 10:50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schafer KA (1998) The cell cycle: a review. Vet Pathol 35:461–478

    Article  CAS  PubMed  Google Scholar 

  • Song Y-X, Yue Z-Y, Wang Z-N, Xu Y-Y, Luo Y, Xu H-M, Zhang X, Jiang L, Xing C-Z, Zhang Y (2011a) MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol Cancer 10:1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song Y, Xu Y, Wang Z, Chen Y, Yue Z, Gao P, Xing C, Xu H (2011b) MicroRNA-148b suppresses cell growth by targeting cholecystokinin-2 receptor in colorectal cancer. Int J Cancer 1051:1042–1051

    Google Scholar 

  • Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M, Flicek P, Koller D et al (2007) Population genomics of human gene expression. Nat Genet 39:1217–1224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stark AL, Zhang W, Mi S, Duan S, O’Donnell PH, Huang RS, Dolan ME (2010) Heritable and non-genetic factors as variables of pharmacologic phenotypes in lymphoblastoid cell lines. Pharmacogenomics J 10:505–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem 149:15–25

    Article  CAS  PubMed  Google Scholar 

  • Takata A, Otsuka M, Kojima K, Yoshikawa T, Kishikawa T, Yoshida H, Koike K (2011) MicroRNA-22 and microRNA-140 suppress NF-κB activity by regulating the expression of NF-κB coactivators. Biochem Biophys Res Commun 411:826–831

    Article  CAS  PubMed  Google Scholar 

  • The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Google Scholar 

  • Ting Y, Medina DJ, Strair RK, Schaar DG (2010) Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun 394:606–611

    Article  CAS  PubMed  Google Scholar 

  • Tsoi M, Laguë M-N, Boyer A, Paquet M, Nadeau M-È, Boerboom D (2013) Anti-VEGFA therapy reduces tumor growth and extends survival in a murine model of ovarian granulosa cell tumor. Transl Oncol 6:226–233

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M, Okabe A, Schetter AJ, Bowman ED, Midorikawa Y et al (2011) Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res 71:4628–4639

    Article  CAS  PubMed  Google Scholar 

  • Whitfield ML, George LK, Grant GD, Perou CM (2006) Common markers of proliferation. Nat Rev Cancer 6:99–106

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y, Wu C, Zheng X, Du Q, Lin D et al (2010a) An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J 277:1684–1694

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Du Q, Liang Z (2010b) Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene 29:4980–4988

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, Matsunaga J, Takahashi R-U, Takata T, Shimamoto A et al (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193:409–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamakuchi M, Yagi S, Ito T, Lowenstein CJ (2011) MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One 6:e20291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu T, Wang X, Gong R, Li A, Yang S, Cao Y, Wen Y, Wang C, Yi X (2009) The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res 28:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Zervos AS, Gyuris J, Brent R (1993) Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72:223–232

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Sun G, Ye P, Li S, Shi Y (2013) MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Sci Rep 3:1329

    PubMed Central  PubMed  Google Scholar 

  • Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S, Wu M, Pan Z, Zhou W (2010) microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 103:1215–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA, Chen TX, Schweitzer AC, Blume JE, Cox NJ et al (2008) Evaluation of genetic variation contributing to differences in gene expression between populations. Am J Hum Genet 82:631–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Z-F, Su H-F, Zou Y, Peng Z, Wu S-X (2011) Expression profiles of microRNAs in radioresistant esophageal cell line. Zhonghua Yi Xue Za Zhi 91:639–642

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the excellent technical support provided by Pharmacogenomics of Anti-cancer Agent Research (PAAR) group cell line core. This study was supported by National Institute of Health/National Cancer Institute grant (R21 CA139278) and by National Institute of Health/National Institute of General Medical Sciences grant (UO1GM61393). RSH also received support from National Institute of Health/National Institute of General Medical Sciences grant (K08GM089941), Circle of Service Foundation Early Career Investigator award, University of Chicago Cancer Center Support Grant (#P30 CA14599), Breast Cancer SPORE Career Development Award (CA125183) a Conquer Cancer Foundation of ASCO Translational Research Professorship award In Memory of Merrill J. Egorin, MD, and pilot grant from National Institute of Health/National Center Advancing Translational Sciences grant (UL1RR024999).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stephanie Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 51 kb)

Supplementary material 2 (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenkala, D., LaCroix, B., Gamazon, E.R. et al. The impact of microRNA expression on cellular proliferation. Hum Genet 133, 931–938 (2014). https://doi.org/10.1007/s00439-014-1434-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-014-1434-4

Keywords

Navigation