Skip to main content
Log in

Significant associations of CHRNA2 and CHRNA6 with nicotine dependence in European American and African American populations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The direct physiological effects that promote nicotine dependence (ND) are mediated by nicotinic acetylcholine receptors (nAChRs). In line with the genetic and pharmacological basis of addiction, many previous studies have revealed significant associations between variants in the nAChR subunit genes and various measures of ND in different ethnic samples. In this study, we first examined the association of variants in nAChR subunits α2 (CHRNA2) and α6 (CHRNA6) genes on chromosome 8 with ND using a family sample consisting of 1,730 European Americans (EAs) from 495 families and 1,892 African Americans (AAs) from 424 families (defined as the discovery family sample). ND was assessed by two standard quantitative measures: smoking quantity (SQ) and the Fagerström Test for ND (FTND). We found nominal associations for all seven tested SNPs of the genes with at least one ND measure in the EA sample and for two SNPs in CHRNA2 in the AA sample. Of these, associations of SNPs rs3735757 with FTND (P = 0.0068) and rs2472553 with both ND measures (with a P value of 0.0043 and 0.00086 for SQ and FTND, respectively) continued to be significant in the EA sample even after correction for multiple tests. Further, we found several haplotypes that were significantly associated with ND in the EA sample in CHRNA6 and in the both EA and AA samples in CHRNA2. To confirm the associations of the two genes with ND, we conducted a replication study with an independent case–control sample from the SAGE study, which showed a significant association of the two genes with ND, although the significantly associated SNPs were not always the same in the two samples. Together, these findings indicate that both CHRNA2 and CHRNA6 play a significant role in the etiology of ND in AA and EA smokers. Further replication in additional independent samples is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al Koudsi N, Tyndale RF (2005) Genetic influences on smoking: a brief review. Ther Drug Monit 27:704–709

    Article  PubMed  Google Scholar 

  • Aridon P, Marini C, Di Resta C, Brilli E, De Fusco M, Politi F, Parrini E, Manfredi I, Pisano T, Pruna D, Curia G, Cianchetti C, Pasqualetti M, Becchetti A, Guerrini R, Casari G (2006) Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am J Hum Genet 79:342–350. doi:10.1086/506459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bergen AW, Korczak JF, Weissbecker KA, Goldstein AM (1999) A genome-wide search for loci contributing to smoking and alcoholism. Genet Epidemiol 17:S55–S60

    Article  PubMed  Google Scholar 

  • Berrettini WH, Doyle GA (2012) The CHRNA5-A3-B4 gene cluster in nicotine addiction. Mol Psychiatry 17:856–866. doi:10.1038/mp.2011.122

    Article  CAS  PubMed  Google Scholar 

  • Beuten J, Ma JZ, Payne TJ, Dupont RT, Crews KM, Somes G, Williams NJ, Elston RC, Li MD (2005) Single- and multilocus allelic variants within the GABAB receptor subunit 2 (GABAB2) gene are significantly associated with nicotine dependence. Am J Hum Genet 76:859–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bierut LJ (2010) Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24-25. Trends Pharmacol Sci 31:46–51. doi:10.1016/j.tips.2009.10.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bierut LJ, Agrawal A, Bucholz KK, Doheny KF, Laurie C, Pugh E, Fisher S, Fox L, Howells W, Bertelsen S, Hinrichs AL, Almasy L, Breslau N, Culverhouse RC, Dick DM, Edenberg HJ, Foroud T, Grucza RA, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Krueger RF, Kuperman S, Lynskey M, Mann K, Neuman RJ, Nothen MM, Nurnberger JI Jr, Porjesz B, Ridinger M, Saccone NL, Saccone SF, Schuckit MA, Tischfield JA, Wang JC, Rietschel M, Goate AM, Rice JP (2010) A genome-wide association study of alcohol dependence. Proc Natl Acad Sci USA 107:5082–5087. doi:10.1073/pnas.0911109107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brunzell DH (2012) Preclinical evidence that activation of mesolimbic alpha 6 subunit containing nicotinic acetylcholine receptors supports nicotine addiction phenotype. Nicotine Tob Res 14:1258–1269. doi:10.1093/ntr/nts089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • CDC (2008) Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000–2004. MMWR Morb Mortal Wkly Rep 57: 1226–1228. (pii: mm5745a3)

  • Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820–7829

    CAS  PubMed  Google Scholar 

  • Cui WY, Li MD (2010) Nicotinic modulation of innate immune pathways via alpha7 nicotinic acetylcholine receptor. J Neuroimmune Pharmacol 479–488. doi: 10.1007/s11481-010-9210-2

  • Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, Salminen O, Tritto T, Butt CM, Allen WR, Stitzel JA, McIntosh JM, Boulter J, Collins AC, Heinemann SF (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci 23:11045–11053

    CAS  PubMed  Google Scholar 

  • Cui WY, Wang S, Yang J, Yi SG, Yoon D, Kim YJ, Payne TJ, Ma JZ, Park T, Li MD (2013) Significant association of CHRNB3 variants with nicotine dependence in multiple ethnic populations. Mol Psychiatry. doi:10.1038/mp.2012.190

    Google Scholar 

  • Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, Bupp S, Heintz N, McIntosh JM, Bencherif M, Marks MJ, Lester HA (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 60:123–136. doi:10.1016/j.neuron.2008.09.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fagerstrom KO (1978) Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav 3:235–241

    Article  CAS  PubMed  Google Scholar 

  • Faraone SV, Su J, Taylor L, Wilcox M, Van Eerdewegh P, Tsuang MT (2004) A novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families. Hum Hered 57:59–68. doi:10.1159/000077543

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1932) Statistical methods for research workers, 4th edn. Oliver and Boyd, Edinburgh

  • Forsgren L, Beghi E, Oun A, Sillanpaa M (2005) The epidemiology of epilepsy in Europe—a systematic review. Eur J Neurol 12:245–253. doi:10.1111/j.1468-1331.2004.00992.x

    Article  CAS  PubMed  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  • Gotti C, Riganti L, Vailati S, Clementi F (2006a) Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des 12:407–428

    Article  CAS  PubMed  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006b) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491. doi:10.1016/j.tips.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  • Gotti C, Guiducci S, Tedesco V, Corbioli S, Zanetti L, Moretti M, Zanardi A, Rimondini R, Mugnaini M, Clementi F, Chiamulera C, Zoli M (2010) Nicotinic acetylcholine receptors in the mesolimbic pathway: primary role of ventral tegmental area alpha6beta2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J Neurosci 30:5311–5325. doi:10.1523/JNEUROSCI.5095-09.2010

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum L, Lerer B (2009) Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry 14:912–945. doi:10.1038/mp.2009.59

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum L, Kanyas K, Karni O, Merbl Y, Olender T, Horowitz A, Yakir A, Lancet D, Ben-Asher E, Lerer B (2006) Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes. Mol Psychiatry 11(312–22):223

    Article  CAS  Google Scholar 

  • Heitjan DF, Guo M, Ray R, Wileyto EP, Epstein LH, Lerman C (2008) Identification of pharmacogenetic markers in smoking cessation therapy. Am J Med Genet B Neuropsychiatr Genet 147B:712–719. doi:10.1002/ajmg.b.30669

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoda JC, Wanischeck M, Bertrand D, Steinlein OK (2009) Pleiotropic functional effects of the first epilepsy-associated mutation in the human CHRNA2 gene. FEBS Lett 583:1599–1604. doi:10.1016/j.febslet.2009.04.024

    Article  CAS  PubMed  Google Scholar 

  • Hoft NR, Corley RP, McQueen MB, Huizinga D, Menard S, Ehringer MA (2009a) SNPs in CHRNA6 and CHRNB3 are associated with alcohol consumption in a nationally representative sample. Genes Brain Behav 8:631–637. doi:10.1111/j.1601-183X.2009.00495.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoft NR, Corley RP, McQueen MB, Schlaepfer IR, Huizinga D, Ehringer MA (2009b) Genetic association of the CHRNA6 and CHRNB3 genes with tobacco dependence in a nationally representative sample. Neuropsychopharmacology 34:698–706. doi:10.1038/npp.2008.122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM (2004) Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 26:61–69. doi:10.1002/gepi.10295

    Article  PubMed  Google Scholar 

  • Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529. doi:10.1371/journal.pgen.1000529

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274:3799–3845. doi:10.1111/j.1742-4658.2007.05935.x

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Neale MC, Sullivan P, Corey LA, Gardner CO, Prescott CA (1999) A population-based twin study in women of smoking initiation and nicotine dependence. Psychol Med 29:299–308

    Article  CAS  PubMed  Google Scholar 

  • Keskitalo-Vuokko K, Pitkaniemi J, Broms U, Heliovaara M, Aromaa A, Perola M, Ripatti S, Salminen O, Salomaa V, Loukola A, Kaprio J (2011) Associations of nicotine intake measures with CHRN genes in Finnish smokers. Nicotine Tob Res 13:686–690. doi:10.1093/ntr/ntr059

    Article  PubMed Central  PubMed  Google Scholar 

  • Kleijn J, Folgering JH, van der Hart MC, Rollema H, Cremers TI, Westerink BH (2011) Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell. Neurosci Lett 493:55–58. doi:10.1016/j.neulet.2011.02.035

    Article  CAS  PubMed  Google Scholar 

  • Landgren S, Engel JA, Andersson ME, Gonzalez-Quintela A, Campos J, Nilsson S, Zetterberg H, Blennow K, Jerlhag E (2009) Association of nAChR gene haplotypes with heavy alcohol use and body mass. Brain Res 1305(Suppl):S72–S79. doi:10.1016/j.brainres.2009.08.026

    Article  CAS  PubMed  Google Scholar 

  • Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM (2004) PBAT: tools for family-based association studies. Am J Hum Genet 74:367–369

    Article  PubMed Central  PubMed  Google Scholar 

  • Li MD, Burmeister M (2009) New insights into the genetics of addiction. Nat Rev Genet 10: 225–231. doi:10.1038/nrg2536

    Google Scholar 

  • Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31

    Article  PubMed  Google Scholar 

  • Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V, Duenes AS, Crews KM, Elston RC (2005) Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 14:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10:387–406. doi:10.1146/annurev.genom.9.081307.164242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834. doi:10.1002/gepi.20533

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma JZ, Beuten J, Payne TJ, Dupont RT, Elston RC, Li MD (2005) Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum Mol Genet 14:1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Maes HH, Sullivan PF, Bulik CM, Neale MC, Prescott CA, Eaves LJ, Kendler KS (2004) A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence. Psychol Med 34:1251–1261

    Article  PubMed  Google Scholar 

  • Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913. doi:10.1038/ng2088

    Article  CAS  PubMed  Google Scholar 

  • Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291:1238–1245

    Article  PubMed  Google Scholar 

  • Perez XA, O’Leary KT, Parameswaran N, McIntosh JM, Quik M (2009) Prominent role of alpha3/alpha6beta2*nAChRs in regulating evoked dopamine release in primate putamen: effect of long-term nicotine treatment. Mol Pharmacol 75:938–946. doi:10.1124/mol.108.053801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez XA, Bordia T, McIntosh JM, Quik M (2010) alpha6ss2* and alpha4ss2* nicotinic receptors both regulate dopamine signaling with increased nigrostriatal damage: relevance to Parkinson’s disease. Mol Pharmacol 78:971–980. doi:10.1124/mol.110.067561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Philibert RA, Todorov A, Andersen A, Hollenbeck N, Gunter T, Heath A, Madden P (2009) Examination of the nicotine dependence (NICSNP) consortium findings in the Iowa adoption studies population. Nicotine Tob Res 11:286–292. doi:10.1093/ntr/ntn034

    Article  PubMed Central  PubMed  Google Scholar 

  • Plazas PV, Katz E, Gomez-Casati ME, Bouzat C, Elgoyhen AB (2005) Stoichiometry of the alpha9alpha10 nicotinic cholinergic receptor. J Neurosci 25:10905–10912. doi:10.1523/JNEUROSCI.3805-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Pons S, Fattore L, Cossu G, Tolu S, Porcu E, McIntosh JM, Changeux JP, Maskos U, Fratta W (2008) Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 28:12318–12327. doi:10.1523/JNEUROSCI.3918-08.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16:36–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML, Agrawal A, Breslau N, Grucza RA, Hatsukami D, Johnson EO, Madden PA, Swan GE, Wang JC, Goate AM, Rice JP, Bierut LJ (2009) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet 150B:453–466. doi:10.1002/ajmg.b.30828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saccone NL, Schwantes-An TH, Wang JC, Grucza RA, Breslau N, Hatsukami D, Johnson EO, Rice JP, Goate AM, Bierut LJ (2010) Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav 9:741–750. doi:10.1111/j.1601-183X.2010.00608.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65:1526–1535. doi:10.1124/mol.65.6.152665/6/1526

    Article  CAS  PubMed  Google Scholar 

  • Salminen O, Drapeau JA, McIntosh JM, Collins AC, Marks MJ, Grady SR (2007) Pharmacology of alpha-conotoxin MII-sensitive subtypes of nicotinic acetylcholine receptors isolated by breeding of null mutant mice. Mol Pharmacol 71:1563–1571. doi:10.1124/mol.106.031492

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PF, Kendler KS (1999) The genetic epidemiology of smoking. Nicotine Tob Res 1(Suppl 2):S51–S57 (discussion S69–S70)

    Article  PubMed  Google Scholar 

  • Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S, Gieger C, Rawal R, Mangino M, Prokopenko I, Magi R, Keskitalo K, Gudjonsdottir IH, Gretarsdottir S, Stefansson H, Thompson JR, Aulchenko YS, Nelis M, Aben KK, den Heijer M, Dirksen A, Ashraf H, Soranzo N, Valdes AM, Steves C, Uitterlinden AG, Hofman A, Tonjes A, Kovacs P, Hottenga JJ, Willemsen G, Vogelzangs N, Doring A, Dahmen N, Nitz B, Pergadia ML, Saez B, De Diego V, Lezcano V, Garcia-Prats MD, Ripatti S, Perola M, Kettunen J, Hartikainen AL, Pouta A, Laitinen J, Isohanni M, Huei-Yi S, Allen M, Krestyaninova M, Hall AS, Jones GT, van Rij AM, Mueller T, Dieplinger B, Haltmayer M, Jonsson S, Matthiasson SE, Oskarsson H, Tyrfingsson T, Kiemeney LA, Mayordomo JI, Lindholt JS, Pedersen JH, Franklin WA, Wolf H, Montgomery GW, Heath AC, Martin NG, Madden PA, Giegling I, Rujescu D, Jarvelin MR, Salomaa V, Stumvoll M, Spector TD, Wichmann HE, Metspalu A, Samani NJ, Penninx BW, Oostra BA, Boomsma DI, Tiemeier H, van Duijn CM, Kaprio J, Gulcher JR, McCarthy MI, Peltonen L, Thorsteinsdottir U, Stefansson K (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42: 448–453. doi:10.1038/ng.573

    Google Scholar 

  • Vink JM, Willemsen G, Boomsma DI (2005) Heritability of smoking initiation and nicotine dependence. Behav Genet 35:397–406

    Article  PubMed  Google Scholar 

  • Wang JC, Kapoor M, Goate AM (2012) The genetics of substance dependence. Annu Rev Genomics Hum Genet 13:241–261. doi:10.1146/annurev-genom-090711-163844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191. doi:10.1093/bioinformatics/btq340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51–58

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2012) Drug report 2012. World Health Organization

  • Yates W, Cadoret R, Troughton E (1998) The Iowa adoption studies methods and results. In: LaBuda M, Grigorenko E (eds) On the way to individuality: methodological issues in behavioral genetics. Nova Science Publishers, Hauppauge, pp 95–125

    Google Scholar 

  • Zeiger JS, Haberstick BC, Schlaepfer I, Collins AC, Corley RP, Crowley TJ, Hewitt JK, Hopfer CJ, Lessem J, McQueen MB, Rhee SH, Ehringer MA (2008) The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco. Hum Mol Genet 17:724–734. doi:10.1093/hmg/ddm344

    Article  CAS  PubMed  Google Scholar 

  • Zhao-Shea R, Liu L, Soll LG, Improgo MR, Meyers EE, McIntosh JM, Grady SR, Marks MJ, Gardner PD, Tapper AR (2011) Nicotine-mediated activation of dopaminergic neurons in distinct regions of the ventral tegmental area. Neuropsychopharmacology 36:1021–1032. doi:10.1038/npp.2010.240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the invaluable contributions of personal information and blood samples by all participants in the study. This project was supported by National Institutes of Health grant R01 DA012844 to MDL. We are thankful to the NIH GWAS data repository for providing us access to their dataset through project 771 to Ming D. Li under the title “Genome-wide association analysis for addiction and type 2 diabetes.” We also thank NIH GWAS Data Repository, the investigators who contributed the phenotype and genotype data from original studies, and the primary funding organization that supported the contributing study. Funding support for SAGE was provided through the NIH Genes, Environment and Health Initiative (GEI) Grant U01 HG004422; the GENEVA Coordinating Center (U01 HG004446); the National Institute on Alcohol Abuse and Alcoholism (U10 AA008401); the National Institute on Drug Abuse (R01 DA013423); the National Cancer Institute (P01 CA089392); and the NIH contract “High throughput genotyping for studying the genetic contributions to human disease” (HHSN268200782096C). Assistance with data cleansing was provided by the National Center for Biotechnology Information. Genotyping was performed at the Johns Hopkins University Center for Inherited Disease Research or at deCODE. Funding support for the GWAS of Lung Cancer and Smoking was provided through the NIH Genes, Environment and Health 7 Initiative [GEI] (Z01 CP 010200). The human subjects participating in the GWAS derive from The Environment and Genetics in Lung Cancer Etiology (EAGLE) case–control study and the Prostate, Lung Colon and Ovary Screening Trial, and these studies were supported by intramural resources of the National Cancer Institute. Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the Gene Environment Association Studies, GENEVA Coordinating Center (U01HG004446). Assistance with data cleansing was provided by the National Center for Biotechnology Information. Funding support for genotyping, which was performed at the Johns Hopkins University Center for Inherited Disease Research, was provided by the NIH GEI (U01HG004438). The datasets used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000093.

Conflict of interest

MDL has served as a consultant and board member of ADial Pharmaceuticals, LLC. All other authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming D. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., D van der Vaart, A., Xu, Q. et al. Significant associations of CHRNA2 and CHRNA6 with nicotine dependence in European American and African American populations. Hum Genet 133, 575–586 (2014). https://doi.org/10.1007/s00439-013-1398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1398-9

Keywords

Navigation