Skip to main content

Advertisement

Log in

COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Collagen Q (ColQ) is a key multidomain functional protein of the neuromuscular junction (NMJ), crucial for anchoring acetylcholinesterase (AChE) to the basal lamina (BL) and accumulating AChE at the NMJ. The attachment of AChE to the BL is primarily accomplished by the binding of the ColQ collagen domain to the heparan sulfate proteoglycan perlecan and the COOH-terminus to the muscle-specific receptor tyrosine kinase (MuSK), which in turn plays a fundamental role in the development and maintenance of the NMJ. Yet, the precise mechanism by which ColQ anchors AChE at the NMJ remains unknown. We identified five novel mutations at the COOH-terminus of ColQ in seven patients from five families affected with endplate (EP) AChE deficiency. We found that the mutations do not affect the assembly of ColQ with AChE to form asymmetric forms of AChE or impair the interaction of ColQ with perlecan. By contrast, all mutations impair in varied degree the interaction of ColQ with MuSK as well as basement membrane extract (BME) that have no detectable MuSK. Our data confirm that the interaction of ColQ to perlecan and MuSK is crucial for anchoring AChE to the NMJ. In addition, the identified COOH-terminal mutants not only reduce the interaction of ColQ with MuSK, but also diminish the interaction of ColQ with BME. These findings suggest that the impaired attachment of COOH-terminal mutants causing EP AChE deficiency is in part independent of MuSK, and that the COOH-terminus of ColQ may interact with other proteins at the BL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amersham Biosciences (2002) Affinity chromatography handbook, principles and methods. Code No. 18-1022-29

  • Antolik C, Catino DH, Resneck WG, Bloch RJ (2006) The tetratricopeptide repeat domains of rapsyn bind directly to cytoplasmic sequences of the muscle-specific kinase. Neuroscience 141:87–100

    Article  PubMed  CAS  Google Scholar 

  • Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y (2002) Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nat Neurosci 5:119–123

    Article  PubMed  CAS  Google Scholar 

  • Arredondo J, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A, Kummer W, Lips K, Vetter DE, Grando SA (2002) Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous epithelium. J Cell Biol 59:325–336

    Article  CAS  Google Scholar 

  • Arredondo J, Chernyavsky AI, Webber RJ, Grando SA (2005) Biological effects of SLURP-1 on human keratinocytes. J Investig Dermatol 125:1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Arredondo J, Chernyavsky AI, Karaouni A, Jolkosky DL, Pinkerton KE, Grando SA (2006) Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. FASEB J 20:2093–2101

    Article  PubMed  CAS  Google Scholar 

  • Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA (2008) Receptor-mediated tobacco toxicity: acceleration of sequential expression of α5 and α7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 22:1356–1368

    Article  PubMed  CAS  Google Scholar 

  • Bon S, Rosenberry TL, Massoulié J (1991) Amphiphilic, glycophosphatidylinositol-specific phospholipase C (PI-PLC)-insensitive monomers and dimers of acetylcholinesterase. Cell Mol Neurobiol 11:157–172

    Article  PubMed  CAS  Google Scholar 

  • Bon S, Coussen F, Massoulie J (1997) Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem 272:3016–3021

    Article  PubMed  CAS  Google Scholar 

  • Bon S, Ayon A, Leroy J, Massoulié J (2003) Trimerization domain of the collagen tail of acetylcholinesterase. Neurochem Res 28:523–535

    Article  PubMed  CAS  Google Scholar 

  • Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. Adv Protein Chem 70:301–339

    Article  PubMed  CAS  Google Scholar 

  • Brodsky B, Shah NK (1995) Protein motifs. 8. The triple-helix motif in proteins. FASEB J 9:1537–1546

    PubMed  CAS  Google Scholar 

  • Brodsky B, Thiagarajan G, Madhan B, Kar K (2008) Triple-helical peptides: an approach to collagen conformation, stability, and self-association. Biopolymers 89:345–353

    Article  PubMed  CAS  Google Scholar 

  • Cartaud A, Strochlic L, Guerra M, Blanchard B, Lambergeon M, Krejci E, Cartaud J, Legay C (2004) MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction. J Cell Biol 165:505–515

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Casanueva OI, Deprez P, García-Huidobro T, Inestrosa NC (1998) At least two receptors of asymmetric acetylcholinesterase are present at the synaptic basal lamina of Torpedo electric organ. Biochem Biophys Res Commun 250:312–317

    Article  PubMed  CAS  Google Scholar 

  • Cohen R, Barenholz Y (1984) Characterization of the association of Electrophorus electricus acetylcholinesterase with sphingomyelin liposomes. Relevance to collagen-sphingomyelin interactions. Biochim Biophys Acta 778:94–104

    Article  PubMed  CAS  Google Scholar 

  • Costell M, Mann K, Yamada Y, Timpl R (1997) Characterization of recombinant perlecan domain I and its substitution by glycosaminoglycans and oligosaccharides. Eur J Biochem 243:115

    Article  PubMed  CAS  Google Scholar 

  • Debnath J, Muthnuswany SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in the three-dimensional basement membrane cultures. Methods 30:256–268

    Article  PubMed  CAS  Google Scholar 

  • Deprez PN, Inestrosa NC (1995) Two heparin-binding domains are present on the collagenic tail of asymmetric acetylcholinesterase. J Biol Chem 270:11043–11046

    Article  PubMed  CAS  Google Scholar 

  • Deprez P, Doss-Pepe E, Brodsky B, Inestrosa NC (2000) Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability. Biochem J 350:283–290

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deprez P, Inestrosa NC, Krejci E (2003) Two different heparin-binding domains in the triple-helical domain of ColQ, the collagen tail subunit of synaptic acetylcholinesterase. J Biol Chem 278:23233–23242

    Article  PubMed  CAS  Google Scholar 

  • Dvir H, Harel M, Bon S, Liu WQ, Vidal M, Garbay C, Sussman JL, Massoulie J, Silman I (2004) The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO J 23:4394–4405

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Feathersone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Engel J, Prockop DJ (1991) The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu Rev Biophys Chem 20:137–152

    Article  CAS  Google Scholar 

  • Engel AG, Ohno K, Sine SM (2003) Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci 4:339–352

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Krejci E, Molgo J, Cunningham JM, Massoulie J, Sanes JR (1999) Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J Cell Biol 144:1349–1360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fridman R, Giaccone G, Kanemoto T, Martin GR, Gazdar AF, Mulshine JL (1990) Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA 87(17):6698–6702

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hall ZW (1973) Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J Neurobiol 4:343–361

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson PS, Elliott T, Wong WS, Rintoul RC, Mackinnon AC, Haslett C, Sethi T (2006) ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase. Cell Death Differ 13(10):1776–1788

    Article  PubMed  CAS  Google Scholar 

  • Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG (2003) Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 348:2543–2556

    Article  PubMed  CAS  Google Scholar 

  • Ishigaki K, Nicolle D, Krejci E, Leroy JP, Koenig J, Fardeau M, Eymard B, Hantaï D (2003) Two novel mutations in the COLQ gene cause endplate acetylcholinesterase deficiency. Neuromuscul Disord 13:236–244

    Article  PubMed  Google Scholar 

  • Jha AK, Yang W, Kirn-Safran CB, Farach-Carson MC, Jia X (2009) Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials 30:6964–6975

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones G, Moore C, Hashemolhosseini S, Brenner HR (1999) Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J Neurosci 19:3376–3383

    PubMed  CAS  Google Scholar 

  • Jungbauer A, Tauer C, Reiter M, Purtscher M, Wenisch E, Steindl F, Buchacher A, Katinger H (1989) Comparison of protein A, protein G and copolymerised hydroxyapatite for the purification of human monoclonal antibodies. J Chromatogr 476:257–268

    Article  PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1965) The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc R Soc Lond B Biol Sci 161:483–496

    Article  PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1973) The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol (Lond) 231:549–574

    PubMed Central  CAS  Google Scholar 

  • Kawakami Y, Ito M, Hirayama M, Sahashi K, Ohkawara B, Masuda A, Nishida H, Mabuchi N, Engel AG, Ohno K (2011) Anti-MuSK autoantibodies block binding of collagen Q to MuSK. Neurology 77:1819–1826

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  PubMed  CAS  Google Scholar 

  • Kimbell LM, Ohno K, Engel AG, Rotundo RL (2004) C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J Biol Chem 279:10997–11005

    Article  PubMed  CAS  Google Scholar 

  • Krejci E, Coussen F, Duval N, Chatel JM, Legay C, Puype M, Vandekerckhove J, Cartaud J, Bon S, Massoulié J (1991) Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J 10:1285–1293

    PubMed Central  PubMed  CAS  Google Scholar 

  • Legay C (2000) Why so many forms of acetylcholinesterase? Microsc Res Tech 49:56–72

    Article  PubMed  CAS  Google Scholar 

  • Legay C, Huchet M, Massoulie J, Changeux JP (1995) Developmental regulation of acetylcholinesterase transcripts in the mouse diaphragm: alternative splicing and focalization. Eur J Neurosci 7:1803–1809

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Camp S, Rachinsky TL, Getman D, Taylor P (1991) Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem 266:23083–23090

    PubMed  CAS  Google Scholar 

  • Li Y, Camp S, Taylor P (1993) Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J Biol Chem 268:5790–5797

    PubMed  CAS  Google Scholar 

  • Maselli RA, Arredondo J, Cagney O, Anderson JA, Williams C, Soliven B (2010) MUSK tyrosine kinase domain mutations causing congenital myasthenia syndrome. Hum Mol Genet 19:2370–2379

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maselli RA, Arredondo J, Ferns MJ, Wollmann RL (2012) Synaptic basal lamina-associated congenital myasthenic syndromes. Ann N Y Acad Sci 1275:36–48

    Article  PubMed  CAS  Google Scholar 

  • Massoulié J, Millard CB (2009) Cholinesterases and the basal lamina at vertebrate neuromuscular junctions. Curr Opin Pharmacol 9:316–325

    Article  PubMed  CAS  Google Scholar 

  • Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  PubMed  CAS  Google Scholar 

  • Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S (1998) Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J Physiol Paris 92:183–190

    Article  PubMed  Google Scholar 

  • Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S (1999) The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem Biol Interact 119–120:29–42

    Article  PubMed  Google Scholar 

  • McLaughlin SH, Bulleid NJ (1998) Molecular recognition in procollagen chain assembly. Matrix Biol 16:369–377

    Article  PubMed  CAS  Google Scholar 

  • Nakata T, Ito M, Azuma Y, Otsuka K, Noguchi Y, Komaki H, Okumura A, Shiraishi K, Masuda A, Natsume Jun, Kojima S, Ohno K (2013) Mutations in the C-terminal domain of ColQ in endplate acetylcholinesterase deficiency compromise ColQ–MuSK interaction. Hum Mutat. doi:10.1002/humu.22325

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  • Ohno K, Brengman J, Tsujino A, Engel AG (1998) Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci USA 95:9654–9659

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohno K, Engel AG, Brengman JM, Shen XM, Heidenreich F, Vincent A, Milone M, Tan E, Demirci M, Walsh P, Nakano S, Akiguchi I (2000) The spectrum of mutations causing endplate acetylcholinesterase deficiency. Ann Neurol 47:162–170

    Article  PubMed  CAS  Google Scholar 

  • Peng HB, Xie H, Rossi SG, Rotundo RL (1999) Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan. J Cell Biol 145:911–921

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    Article  PubMed  CAS  Google Scholar 

  • Rosenberry TL (1979) Quantitative simulation of endplate currents at neuromuscular junctions of acetylcholine with acetylcholine receptor and acetylcholinesterase. Biophys J 26:263–290

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rossi SG, Rotundo RL (1996) Transient interactions between collagen-tailed acetylcholinesterase and sulfated proteoglycans prior to immobilization on the extracellular matrix. J Biol Chem 271:1979–1987

    Article  PubMed  CAS  Google Scholar 

  • Rotundo RL, Fambrough DM (1994) Function and molecular structure of acetylcholinesterase. In: Engel AG, Franzini-Armstrong C (eds) Myology. McGraw-Hill, New York, pp 607–623

    Google Scholar 

  • Rotundo RL, Rossi SG, Anglister L (1997) Transplantation of quail collagen-tailed acetylcholinesterase molecules onto the frog neuromuscular synapse. J Cell Biol 136:367–374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rotundo RL, Rossi SG, Kimbell LM, Ruiz C, Marrero E (2005) Targeting acetylcholinesterase to the neuromuscular synapse. Chem Biol Interact 157–158:15–21

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40:W471–W477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sigoillot SM, Bourgeois F, Lambergeon M, Strochlic L, Legay C (2010) ColQ controls postsynaptic differentiation at the neuromuscular junction. J Neurosci 30:13–23

    Article  PubMed  CAS  Google Scholar 

  • Sikorav JL, Duval N, Anselmet A, Bon S, Krejci E, Legay C, Osterlund M, Reimund B, Massoulié J (1988) Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form. EMBO J 10:2983–2993

    Google Scholar 

  • Simon S, Krejci E, Massoulie J (1998) A four-to-one association between peptide motifs: four C terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J 17:6178–6187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spivak M, Bereman MS, Maccoss MJ, Noble WS (2012) Learning score function parameters for improved spectrum identification in tandem mass spectrometry experiments. J Proteome Res 11(9):4499–4508

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Strochlic L, Cartaud A, Labas V, Hoch W, Rossier J, Cartaud J (2001) MAGI-1c: a synaptic MAGUK interacting with MuSK at the vertebrate neuromuscular junction. J Cell Biol 153:1127–1132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vigny M, Bon S, Massoulié J, Leterrier F (1978) Active-site catalytic efficiency of acetylcholinesterase molecular forms in Electrophorus, Torpedo, rat, and chicken. Eur J Biochem 85:317–323

    Article  PubMed  CAS  Google Scholar 

  • Vigny M, Martin G, Grotendorst GR (1983) Interactions of asymmetric forms of acetylcholinesterase with basement membrane components. J Biol Chem 258:8794–8798

    PubMed  CAS  Google Scholar 

  • Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

  • Yang WD, Gomes RR Jr, Alicknavitch M, Farach-Carson MC, Carson DD (2005) Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril scaffolds. Tissue Eng 11:76

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Younkin SG, Rosenstein C, Collins PL, Rosenberry TL (1982) Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragm. J Biol Chem 257:13630–13637

    PubMed  CAS  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40. doi:10.1186/1471-2105-9-40

    Article  CAS  Google Scholar 

  • Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Robert Fairclough and Dr. David P. Richman for critical reading of the manuscript, Dr. Palmer Taylor from UC-San Diego for AChE clone, and Dr. Mary C. Farach-Carson from Rice University for the HEK cells expressing perlecan domain I, and Dr. Samuel Ignacio Pascual Pascual, Madrid, Spain, for sharing one of his studied families with us. This work was supported by National Institutes of Health grant RO1NS049117-01 to RAM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Arredondo or Ricardo A. Maselli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,025 kb)

Supplementary material 2 (PDF 472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arredondo, J., Lara, M., Ng, F. et al. COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina. Hum Genet 133, 599–616 (2014). https://doi.org/10.1007/s00439-013-1391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1391-3

Keywords

Navigation