Advertisement

Human Genetics

, Volume 132, Issue 11, pp 1223–1234 | Cite as

A novel rearrangement of occludin causes brain calcification and renal dysfunction

  • Marissa A. LeBlanc
  • Lynette S. Penney
  • Daniel Gaston
  • Yuhao Shi
  • Erika Aberg
  • Mathew Nightingale
  • Haiyan Jiang
  • Roxanne M. Gillett
  • Somayyeh Fahiminiya
  • Christine Macgillivray
  • Ellen P. Wood
  • Philip D. Acott
  • M. Naeem Khan
  • Mark E. Samuels
  • Jacek Majewski
  • Andrew Orr
  • Christopher R. McMaster
  • Karen BedardEmail author
Original Investigation

Abstract

Pediatric intracranial calcification may be caused by inherited or acquired factors. We describe the identification of a novel rearrangement in which a downstream pseudogene translocates into exon 9 of OCLN, resulting in band-like brain calcification and advanced chronic kidney disease in early childhood. SNP genotyping and read-depth variation from whole exome sequencing initially pointed to a mutation in the OCLN gene. The high degree of identity between OCLN and two pseudogenes required a combination of multiplex ligation-dependent probe amplification, PCR, and Sanger sequencing to identify the genomic rearrangement that was the underlying genetic cause of the disease. Mutations in exon 3, or at the 5–6 intron splice site, of OCLN have been reported to cause brain calcification and polymicrogyria with no evidence of extra-cranial phenotypes. Of the OCLN splice variants described, all make use of exon 9, while OCLN variants that use exons 3, 5, and 6 are tissue specific. The genetic rearrangement we identified in exon 9 provides a plausible explanation for the expanded clinical phenotype observed in our individuals. Furthermore, the lack of polymicrogyria associated with the rearrangement of OCLN in our patients extends the range of cranial defects that can be observed due to OCLN mutations.

Keywords

Copy Number Variation Sanger Sequencing Chronic Kidney Disease Stage Single Nucleotide Polymorphism Genotyping Homozygosity Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to the family members who generously contributed their time and materials for this research. The authors would like to acknowledge the significant contributions to this work that were made by Dr. Duane Guernsey. Dr. Guernsey was a valued member of our research team who passed during the completion of this project. The following agencies provided funding for this project: Genome Canada, Genome Atlantic, Nova Scotia Health Research Foundation, Nova Scotia Research and Innovation Trust, Dalhousie Faculty of Medicine, Capital District Health Authority, IWK Health Centre Foundation, and Capital Health Research Fund. The authors would like to acknowledge the contribution of the Genome Quebec High Throughput Sequencing Platform. M.A.L is supported by a trainee award from the Beatrice Hunter Cancer Research Institute with funds provided by The Terry Fox Strategic Health Research Training Program in Cancer Research from CIHR. M.E.S is supported by the Centre de Recherche du CHU Ste-Justine.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

439_2013_1327_MOESM1_ESM.docx (421 kb)
Supplementary material 1 (DOCX 420 kb)

References

  1. Abdel-Salam GM, Zaki MS (2009) Band-like intracranial calcification (BIC), microcephaly and malformation of brain development: a distinctive form of congenital infection like syndromes. Am J Med Genet A 149A(7):1565–1568. doi: 10.1002/ajmg.a.32894 PubMedCrossRefGoogle Scholar
  2. Alfares A, Nunez LD, Al-Thihli K, Mitchell J, Melancon S, Anastasio N, Ha KC, Majewski J, Rosenblatt DS, Braverman N (2011) Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype. J Med Genet 48(9):602–605. doi: 10.1136/jmedgenet-2011-100230 PubMedCrossRefGoogle Scholar
  3. Briggs TA, Wolf NI, D’Arrigo S, Ebinger F, Harting I, Dobyns WB, Livingston JH, Rice GI, Crooks D, Rowland-Hill CA, Squier W, Stoodley N, Pilz DT, Crow YJ (2008) Band-like intracranial calcification with simplified gyration and polymicrogyria: a distinct “pseudo-TORCH” phenotype. Am J Med Genet A 146A(24):3173–3180. doi: 10.1002/ajmg.a.32614 PubMedCrossRefGoogle Scholar
  4. Crow YJ, Jackson AP, Roberts E, van Beusekom E, Barth P, Corry P, Ferrie CD, Hamel BC, Jayatunga R, Karbani G, Kalmanchey R, Kelemen A, King M, Kumar R, Livingstone J, Massey R, McWilliam R, Meager A, Rittey C, Stephenson JB, Tolmie JL, Verrips A, Voit T, van Bokhoven H, Brunner HG, Woods CG (2000) Aicardi-Goutieres syndrome displays genetic heterogeneity with one locus (AGS1) on chromosome 3p21. Am J Hum Genet 67(1):213–221. doi: 10.1086/302955 PubMedCrossRefGoogle Scholar
  5. Crow YJ, Black DN, Ali M, Bond J, Jackson AP, Lefson M, Michaud J, Roberts E, Stephenson JB, Woods CG, Lebon P (2003) Cree encephalitis is allelic with Aicardi-Goutieres syndrome: implications for the pathogenesis of disorders of interferon alpha metabolism. J Med Genet 40(3):183–187PubMedCrossRefGoogle Scholar
  6. Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN, Sahoo T (2010) Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader–Willi syndrome. Eur J Hum Genet (EJHG) 18(11):1196–1201. doi: 10.1038/ejhg.2010.102 CrossRefGoogle Scholar
  7. Huqun, Fukuyama S, Morino H, Miyazawa H, Tanaka T, Suzuki T, Kohda M, Kawakami H, Okazaki Y, Seyama K, Hagiwara K (2010) A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data. BMC Bioinform 11 (Suppl 7):S5. doi: 10.1186/1471-2105-11-S7-S5
  8. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. doi: 10.1093/bioinformatics/btp324 PubMedCrossRefGoogle Scholar
  9. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. doi: 10.1101/gr.107524.110 PubMedCrossRefGoogle Scholar
  10. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. doi: 10.1038/nmeth.1226 PubMedCrossRefGoogle Scholar
  11. O’Driscoll MC, Daly SB, Urquhart JE, Black GC, Pilz DT, Brockmann K, McEntagart M, Abdel-Salam G, Zaki M, Wolf NI, Ladda RL, Sell S, D’Arrigo S, Squier W, Dobyns WB, Livingston JH, Crow YJ (2010) Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria. Am J Hum Genet 87(3):354–364. doi: 10.1016/j.ajhg.2010.07.012 PubMedCrossRefGoogle Scholar
  12. Olshen AB, Venkatraman ES, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5(4):557–572. doi: 10.1093/biostatistics/kxh008 PubMedCrossRefGoogle Scholar
  13. Reardon W, Hockey A, Silberstein P, Kendall B, Farag TI, Swash M, Stevenson R, Baraitser M (1994) Autosomal recessive congenital intrauterine infection-like syndrome of microcephaly, intracranial calcification, and CNS disease. Am J Med Genet 52(1):58–65. doi: 10.1002/ajmg.1320520112 PubMedCrossRefGoogle Scholar
  14. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. doi: 10.1038/nbt.1754 PubMedCrossRefGoogle Scholar
  15. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11(12):4131–4142PubMedCrossRefGoogle Scholar
  16. Shi Y, Majewski J (2013) FishingCNV: a graphical software package for detecting rare copy number variations in exome-sequencing data. Bioinformatics. doi: 10.1093/bioinformatics/btt151 Google Scholar
  17. Thorvaldsdottir H, Robinson JT, Mesirov JP (2012) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. doi: 10.1093/bib/bbs017 PubMedGoogle Scholar
  18. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. doi: 10.1093/nar/gkq603 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marissa A. LeBlanc
    • 1
  • Lynette S. Penney
    • 2
  • Daniel Gaston
    • 1
  • Yuhao Shi
    • 3
  • Erika Aberg
    • 4
  • Mathew Nightingale
    • 1
  • Haiyan Jiang
    • 5
  • Roxanne M. Gillett
    • 1
  • Somayyeh Fahiminiya
    • 3
  • Christine Macgillivray
    • 6
  • Ellen P. Wood
    • 2
  • Philip D. Acott
    • 2
  • M. Naeem Khan
    • 7
  • Mark E. Samuels
    • 8
  • Jacek Majewski
    • 3
  • Andrew Orr
    • 1
    • 9
  • Christopher R. McMaster
    • 10
  • Karen Bedard
    • 1
  1. 1.Department of PathologyDalhousie UniversityHalifaxCanada
  2. 2.Department of PediatricsDalhousie UniversityHalifaxCanada
  3. 3.Department of Human GeneticsMcGill UniversityMontrealCanada
  4. 4.Maritime Medical GeneticsIWK Health CentreHalifaxCanada
  5. 5.Department of BiostatisticsPrincess Margaret CentreTorontoCanada
  6. 6.Department of OphthalmologyCapital HealthHalifaxCanada
  7. 7.Department of RadiologyDalhousie UniversityHalifaxCanada
  8. 8.Department of MedicineUniversity of MontrealMontrealCanada
  9. 9.Department of OphthalmologyDalhousie UniversityHalifaxCanada
  10. 10.Department of PharmacologyDalhousie UniversityHalifaxCanada

Personalised recommendations