Human loci involved in drug biotransformation: worldwide genetic variation, population structure, and pharmacogenetic implications

Abstract

Understanding the role of inheritance in individual variation in drug response is the focus of pharmacogenetics (PGx). A key part of this understanding is quantifying the role of genetic ancestry in this phenotypic outcome. To provide insight into the relationship between ethnicity and drug response, this study first infers the global distribution of PGx variation and defines its structure. Second, the study evaluates if geographic population structure stems from all PGx loci in general, or if structure is caused by specific genes. Lastly, we identify the genetic variants contributing the greatest proportion of such structure. Our study describes the global genetic structure of PGx loci across the 52 populations of the Human Genome Diversity Cell-Line Panel, the most inclusive set of human populations freely available for studies on human genetic variation. By analysing genetic variation at 1,001 single nucleotide polymorphisms (SNPs) involved in biotransformation of exogenous substances, we describe the between-populations PGx variation, as well geographical groupings of diversity. In addition, with discriminant analysis of principal component (DAPC), we infer how many and which groups of populations are supported by PGx variation, and identify which SNPs actually contribute to the PGx structure between such groups. Our results show that intergenic, synonymous and non-synonymous SNPs show similar levels of genetic variation across the globe. Conversely, loci coding for Cytochrome P450s (mainly metabolizing exogenous substances) show significantly higher levels of genetic diversity between populations than the other gene categories. Overall, genetic variation at PGx loci correlates with geographic distances between populations, and the apportionment of genetic variation is similar to that observed for the rest of the genome. In other words, the pattern of PGx variation has been mainly shaped by the demographic history of our species, as in the case of most of our genes. The population structure defined by PGx loci supports the presence of six genetic clusters reflecting geographic location of samples. In particular, the results of the DAPC analyses show that 27 SNPs substantially contribute to the first three discriminant functions. Among these SNPs, some, such as the intronic rs1403527 of NR1I2 and the non-synonymous rs699 of AGT, are known to be associated with specific drug responses. Their substantial variation between different groups of populations may have important implications for PGx practical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bailey KR, Cheng C (2010) Conference Scene: the great debate: genome-wide association studies in pharmacogenetics research, good or bad? Pharmacogenomics 11:305–308

    PubMed  Article  Google Scholar 

  2. Barbujani G, Colonna V (2010) Human genome diversity: frequently asked questions. Trends Genet 26:285–295

    PubMed  Article  CAS  Google Scholar 

  3. Biswas S, Scheinfeldt LB, Akey JM (2009) Genome-wide insights into the patterns and determinants of fine-scale population structure in humans. Am J Hum Genet 84:641–650

    PubMed  Article  CAS  Google Scholar 

  4. Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton University Press, Princeton

    Google Scholar 

  5. Chen X, Wang H, Zhou G, Zhang X, Dong X, Zhi L, Jin L, He F (2009) Molecular population genetics of human CYP3A locus: signatures of positive selection and implications for evolutionary environmental medicine. Environ Health Perspect 117:1541–1548

    PubMed  CAS  Google Scholar 

  6. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, Wu JY, Chen YT (2004) Medical genetics: a marker for Stevens–Johnson syndrome. Nature 428:486

    PubMed  Article  CAS  Google Scholar 

  7. Coop G, Pickrell JK, Novembre J, Kudaravalli S, Li J, Absher D, Myers RM, Cavalli-Sforza LL, Feldman MW, Pritchard JK (2009) The role of geography in human adaptation. PLoS Genet 5:e1000500

    PubMed  Article  Google Scholar 

  8. Cooper GM, Johnson JA, Langaee TY et al (2008) A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112:1022–1027

    PubMed  Article  CAS  Google Scholar 

  9. Dussault I, Forman BM (2002) The nuclear receptor PXR: a master regulator of “homeland” defense. Crit Rev Eukaryot Gene Expr 12:53–64

    PubMed  Article  CAS  Google Scholar 

  10. Excoffier L, Hamilton G (2003) Comment on “Genetic structure of human populations”. Science 300:1877 (author reply 1877)

    Google Scholar 

  11. Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Article  Google Scholar 

  12. Fuselli S, Gilman RH, Chanock SJ et al (2007) Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across Native American populations and high intra-population diversity. Pharmacogenomics J 7:144–152

    PubMed  Article  CAS  Google Scholar 

  13. Fuselli S, de Filippo C, Mona S, Sistonen J, Fariselli P, Destro-Bisol G, Barbujani G, Bertorelle G, Sajantila A (2010) Evolution of detoxifying systems: the role of environment and population history in shaping genetic diversity at human CYP2D6 locus. Pharmacogenet Genomics 20:485–499

    PubMed  Article  CAS  Google Scholar 

  14. Ge D, Fellay J, Thompson AJ, Simon JS et al (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401

    PubMed  Article  CAS  Google Scholar 

  15. Guengerich FP (2003) Cytochromes P450, drugs, and diseases. Mol Interv 3:194–204

    PubMed  Article  CAS  Google Scholar 

  16. Haldane JBS (1940) The blood-group frequencies of European peoples and racial origins. Hum Biol 12:457–480

    Google Scholar 

  17. Hancock AM, Witonsky DB, Alkorta-Aranburu G, Beall CM, Gebremedhin A, Sukernik R, Utermann G, Pritchard JK, Coop G, Di Rienzo A (2011) Adaptations to climate-mediated selective pressures in humans. PLoS Genet 7:e1001375

    PubMed  Article  CAS  Google Scholar 

  18. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    PubMed  Article  CAS  Google Scholar 

  19. Jakobsson M, Scholz SW, Scheet P et al (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451:998–1003

    PubMed  Article  CAS  Google Scholar 

  20. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    PubMed  Article  CAS  Google Scholar 

  21. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    PubMed  Article  Google Scholar 

  22. Kuribayashi I, Kuge H, Santa RJ et al (2003) A missense mutation (GGC[435Gly] → AGC[Ser]) in exon 8 of the CYP11B2 gene inherited in Japanese patients with congenital hypoaldosteronism. Horm Res 60:255–260

    PubMed  Article  CAS  Google Scholar 

  23. Leabman MK, Huang CC, DeYoung J et al (2003) Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc Natl Acad Sci USA 100:5896–5901

    PubMed  Article  CAS  Google Scholar 

  24. Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Article  Google Scholar 

  25. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319:1100–1104

    PubMed  Article  CAS  Google Scholar 

  26. Lin KM, Tsou HH, Tsai IJ et al (2010) CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics 11:1535–1543

    PubMed  Article  CAS  Google Scholar 

  27. Luft FC (2001) Molecular genetics of salt-sensitivity and hypertension. Drug Metab Dispos 29:500–504

    PubMed  CAS  Google Scholar 

  28. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, Ng MH (2007) Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48:1015–1018

    PubMed  Article  CAS  Google Scholar 

  29. Mason DA, Moore JD, Green SA, Liggett SB (1999) A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 274:12670–12674

    PubMed  Article  CAS  Google Scholar 

  30. McCormack M, Alfirevic A, Bourgeois S et al (2011) HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 364:1134–1143

    PubMed  Article  CAS  Google Scholar 

  31. Mulligan CJ, Hunley K, Cole S, Long JC (2004) Population genetics, history, and health patterns in native Americans. Annu Rev Genomics Hum Genet 5:295–315

    PubMed  Article  CAS  Google Scholar 

  32. Nakajima T, Wooding S, Sakagami T et al (2004) Natural selection and population history in the human angiotensinogen gene (AGT): 736 complete AGT sequences in chromosomes from around the world. Am J Hum Genet 74:898–916

    PubMed  Article  CAS  Google Scholar 

  33. Nebert DW, Russell DW (2002) Clinical importance of the cytochromes P450. Lancet 360:1155–1162

    PubMed  Article  CAS  Google Scholar 

  34. Nelson MR, Bryc K, King KS et al (2008) The Population Reference Sample, POPRES: a resource for population, disease, and pharmacological genetics research. Am J Hum Genet 83:347–358

    PubMed  Article  CAS  Google Scholar 

  35. Newton-Cheh C, Johnson T, Gateva V et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676

    PubMed  Article  CAS  Google Scholar 

  36. Novembre J, Di Rienzo A (2009) Spatial patterns of variation due to natural selection in humans. Nat Rev Genet 10:745–755

    PubMed  Article  CAS  Google Scholar 

  37. Patin E, Barreiro LB, Sabeti PC et al (2006) Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. Am J Hum Genet 78:423–436

    PubMed  Article  CAS  Google Scholar 

  38. Pereira L, Zamudio R, Soares-Souza G et al (2012) Socioeconomic and nutritional factors account for the association of gastric cancer with Amerindian ancestry in a Latin American admixed population. PLoS One 7:e41200

    PubMed  Article  CAS  Google Scholar 

  39. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, Srinivasan BS, Barsh GS, Myers RM, Feldman MW, Pritchard JK (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19:826–837

    PubMed  Article  CAS  Google Scholar 

  40. Profaizer T, Eckels D (2012) HLA alleles and drug hypersensitivity reactions. Int J Immunogenet 39:99–105

    PubMed  Article  CAS  Google Scholar 

  41. R Development Core Team (2008) R: a language and environment for statistical computing. www.R-project.org. Foundation for Statistical Computing, Vienna

  42. Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL (2005) Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci USA 102:15942–15947

    PubMed  Article  CAS  Google Scholar 

  43. Riva A, Kohane IS (2002) SNPper: retrieval and analysis of human SNPs. Bioinformatics (Oxford, England) 18:1681–1685

    Article  CAS  Google Scholar 

  44. Rosenberg NA (2006) Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs of close relatives. Ann Hum Genet 70:841–847

    PubMed  Article  CAS  Google Scholar 

  45. Rosenberg MS, Anderson CD (2001) PASSAGE: pattern analysis, spatial statistics and geographic exegesis, 1.0 edn. Department of Biology, Arizona State University, Tempe, AZ

  46. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science (New York, NY) 298:2381–2385

    Article  CAS  Google Scholar 

  47. Roy PD, Majumder M, Roy B (2008) Pharmacogenomics of anti-TB drugs-related hepatotoxicity. Pharmacogenomics 9:311–321

    PubMed  Article  Google Scholar 

  48. Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, Clark AG (2010) Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet 86:661–673

    PubMed  Article  CAS  Google Scholar 

  49. Scliar MO, Soares-Souza GB, Chevitarese J, Lemos L, Magalhaes WC, Fagundes NJ, Bonatto SL, Yeager M, Chanock SJ, Tarazona-Santos E (2012) The population genetics of Quechuas, the largest native South American group: autosomal sequences, SNPs, and microsatellites evidence high level of diversity. Am J Phys Anthropol 147:443–451

    PubMed  Article  Google Scholar 

  50. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A (2009) Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 19:170–179

    PubMed  Article  CAS  Google Scholar 

  51. Suarez-Kurtz G, Pena SD (2006) Pharmacogenomics in the Americas: the impact of genetic admixture. Curr Drug Targets 7:1649–1658

    PubMed  Article  CAS  Google Scholar 

  52. Suarez-Kurtz G, Genro JP, de Moraes MO, Ojopi EB, Pena SD, Perini JA, Ribeiro-Dos-Santos A, Romano-Silva MA, Santana I, Struchiner CJ (2012) Global pharmacogenomics: impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians. Pharmacogenomics J 12:267–276

    PubMed  Article  CAS  Google Scholar 

  53. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7:584–590

    PubMed  Article  CAS  Google Scholar 

  54. Takeuchi F, McGinnis R, Bourgeois S et al (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5:e1000433

    PubMed  Article  Google Scholar 

  55. Teichert M, Eijgelsheim M, Rivadeneira F, Uitterlinden AG, van Schaik RH, Hofman A, De Smet PA, van Gelder T, Visser LE, Stricker BH (2009) A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 18:3758–3768

    PubMed  Article  CAS  Google Scholar 

  56. Thomas JH (2007) Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLoS Genet 3:e67

    PubMed  Article  Google Scholar 

  57. Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A (2004) CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 75:1059–1069

    PubMed  Article  CAS  Google Scholar 

  58. Tishkoff SA, Kidd KK (2004) Implications of biogeography of human populations for ‘race’ and medicine. Nat Genet 36:S21–S27

    PubMed  Article  CAS  Google Scholar 

  59. Tishkoff SA, Reed FA, Friedlaender FR et al (2009) The genetic structure and history of Africans and African Americans. Science 324:1035–1044

    Article  CAS  Google Scholar 

  60. Visscher H, Ross CJ, Dube MP, Brown AM, Phillips MS, Carleton BC, Hayden MR (2009) Application of principal component analysis to pharmacogenomic studies in Canada. Pharmacogenomics J 9:362–372

    PubMed  Article  CAS  Google Scholar 

  61. Wain LV, Verwoert GC, O’Reilly PF et al (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 43:1005–1011

    PubMed  Article  CAS  Google Scholar 

  62. Wang H, Ding K, Zhang Y, Jin L, Kullo IJ, He F (2007a) Comparative and evolutionary pharmacogenetics of ABCB1: complex signatures of positive selection on coding and regulatory regions. Pharmacogenet Genomics 17:667–678

    PubMed  Article  CAS  Google Scholar 

  63. Wang S, Lewis CM, Jakobsson M et al (2007b) Genetic variation and population structure in native Americans. PLoS Genet 3:e185

    PubMed  Article  Google Scholar 

  64. Ward K, Hata A, Jeunemaitre X et al (1993) A molecular variant of angiotensinogen associated with preeclampsia. Nat Genet 4:59–61

    PubMed  Article  CAS  Google Scholar 

  65. Weiss KM, Long JC (2009) Non-Darwinian estimation: my ancestors, my genes’ ancestors. Genome Res 19:703–710

    PubMed  Article  CAS  Google Scholar 

  66. Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG, Bradman N, Goldstein DB (2001) Population genetic structure of variable drug response. Nat Genet 29:265–269

    PubMed  Article  CAS  Google Scholar 

  67. Wooding SP, Watkins WS, Bamshad MJ, Dunn DM, Weiss RB, Jorde LB (2002) DNA sequence variation in a 3.7-kb noncoding sequence 5′ of the CYP1A2 gene: implications for human population history and natural selection. Am J Hum Genet 71:528–542

    PubMed  Article  CAS  Google Scholar 

  68. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216

    PubMed  Article  CAS  Google Scholar 

  69. Xue Y, Sun D, Daly A, Yang F, Zhou X, Zhao M, Huang N, Zerjal T, Lee C, Carter NP, Hurles ME, Tyler-Smith C (2008) Adaptive evolution of UGT2B17 copy-number variation. Am J Hum Genet 83:337–346

    PubMed  Article  CAS  Google Scholar 

  70. Zhivotovsky LA, Rosenberg NA, Feldman MW (2003) Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. Am J Hum Genet 72:1171–1186

    PubMed  Article  CAS  Google Scholar 

  71. Zhou C, Verma S, Blumberg B (2009) The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nucl Recept Signal 7:e001

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Sean Hoban, Mark Jobling, Turi King, Giorgio Bertorelle, and Silvia Ghirotto for their useful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvia Fuselli.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maisano Delser, P., Fuselli, S. Human loci involved in drug biotransformation: worldwide genetic variation, population structure, and pharmacogenetic implications. Hum Genet 132, 563–577 (2013). https://doi.org/10.1007/s00439-013-1268-5

Download citation

Keywords

  • Discriminant Function
  • Drug Biotransformation
  • Human Genome Diversity Panel
  • Aminoacid Change
  • Variable Drug Response