Skip to main content

Advertisement

Log in

Increased paternal age and the influence on burden of genomic copy number variation in the general population

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Genomic copy number variations (CNVs) and increased parental age are both associated with the risk to develop a variety of clinical neuropsychiatric disorders such as autism, schizophrenia and bipolar disorder. At the same time, it has been shown that the rate of transmitted de novo single nucleotide mutations is increased with paternal age. To address whether paternal age also affects the burden of structural genomic deletions and duplications, we examined various types of CNV burden in a large population sample from the Netherlands. Healthy participants with parental age information (n = 6,773) were collected at different University Medical Centers. CNVs were called with the PennCNV algorithm using Illumina genome-wide SNP array data. We observed no evidence in support of a paternal age effect on CNV load in the offspring. Our results were negative for global measures as well as several proxies for de novo CNV events in this unique sample. While recent studies suggest de novo single nucleotide mutation rate to be dominated by the age of the father at conception, our results strongly suggest that at the level of global CNV burden there is no influence of increased paternal age. While it remains possible that local genomic effects may exist for specific phenotypes, this study indicates that global CNV burden and increased father’s age may be independent disease risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitken R, Koopman P, Lewis S (2004) Seeds of concern. Nature 432:48–52

    Article  PubMed  CAS  Google Scholar 

  • Alkan C, Coe B, Eichler E (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363–376

    Article  PubMed  CAS  Google Scholar 

  • Bassett AS, Scherer SW, Brzustowicz LM (2010) Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease. Am J Psychiatry 167:899–914

    Article  PubMed  Google Scholar 

  • Blauw H, Veldink J, van Es M, van Vught P, Saris C, van der Zwaag B et al (2008) Copy-number variation in sporadic amytrophic lateral sclerosis: a genome-wide screen. Lancet Neurol 7:319–326

    Article  PubMed  CAS  Google Scholar 

  • Blauw H, Al-Chalabi A, Andersen P, van Vught P, Diekstra F, van Es M et al (2010) A large genome scan for rare CNVs in amyotrophic lateral sclerosis. Hum Mol Genet 19:4091–4099

    Article  PubMed  CAS  Google Scholar 

  • Buizer-Voskamp JE, Laan W, Staal WG, Hennekam E, Aukes M, Termorshuizen F et al (2011a) Paternal age and psychiatric disorders: findings from a Dutch population registry. Schizophr Res 129:128–132

    Article  PubMed  Google Scholar 

  • Buizer-Voskamp JE, Muntjewerff J, Strengman E, Sabatti C, Stefansson H, GROUP Consortium et al (2011b) Genome-wide analysis shows increased frequency of copy number variation deletions in Dutch schizophrenia patients. Biol Psychiatry 70:655–662

    Article  PubMed  CAS  Google Scholar 

  • Cannon M (2009) Contrasting effects of maternal and paternal age on offspring intelligence. PLoS Med 6:e1000042

    Article  Google Scholar 

  • Carvalho CM, Zhang F, Lupski JR (2010) Genomic disorders: a window into human gene and genome evolution. PNAS 107:1765–1771

    Article  PubMed  CAS  Google Scholar 

  • Conrad D, Keebler J, DePristo M, Lindsay S, Zhang Y, Casals F et al (2011) Variation in genome-wide mutation rates within and between human families. Nat Genet 43:712–714

    Article  PubMed  CAS  Google Scholar 

  • Crow J (2003) Development: there’s something curious about paternal-age effects. Science 301:606–607

    Article  PubMed  CAS  Google Scholar 

  • Curley J, Mahoodh R, Chanmpagne F (2011) Epigenetics and the origins of paternal effects. Horm Behav 59:306–314

    Article  PubMed  Google Scholar 

  • Durkin M, Maenner M, Newschaffer C, Lee L, Cunniff C, Daniels J et al (2008) Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol 168:1268–1276

    Article  PubMed  Google Scholar 

  • Fan Y, Jayakar P, Zhu H, Barbouth D, Sacharow S, Morales A et al (2007) Detection of pathogeneic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat 28:1124–1132

    Article  PubMed  CAS  Google Scholar 

  • Fokkema T, de Valk H, de Beer J, van Duin C (2008) The Netherlands: childbearing within the context of a “poldermodel” society. Demographic Res 19:743–794

    Article  Google Scholar 

  • Goriely A, McVean G, Röjmyr M, Ingemarsson B, Wilkie A (2003) Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 301:643–646

    Article  PubMed  CAS  Google Scholar 

  • Grewal J, Carmichael S, Yang W, Shaw G (2011) Paternal age and congenital malformations in offspring in California, 1989–2002. Matern Child Health J 16:385–392

    Article  Google Scholar 

  • Hehir-Kwa JY, Rodríguez-Santiago B, Vissers LE, de Leeuw N, Pfundt R, Buitelaar J et al (2011) De novo copy number variants associated with intellectual disability have a paternal origin and age bias. J Med Genet 48:776–778

    Article  PubMed  CAS  Google Scholar 

  • Hofman A, Breteler M, van Duijn C, Janssen H, Krestin G, Kuipers E et al (2009) The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol 24:553–572

    Article  PubMed  Google Scholar 

  • Hurst L, Ellegren H (2002) Mystery of the mutagenic male. Nature 420:365–366

    Article  PubMed  CAS  Google Scholar 

  • Hyman S (2007) Can neuroscience be integrated into the DSM-V? Nat Rev Neurosci 8:725–732

    Article  PubMed  CAS  Google Scholar 

  • Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J et al (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74:285–299

    Article  PubMed  CAS  Google Scholar 

  • Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D et al (2009) Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 84:148–161

    Article  PubMed  CAS  Google Scholar 

  • Itsara A, Wu H, Smith J, Nickerson D, Romieu I, London S et al (2010) De novo rates and selection of large copy number variation. Genome Res 20:1469–1481

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson M, Scholz S, Scheet P, Gibbs J, VanLiere J, Fung H et al (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Kiemeney L, Thorlacius S, Sulem P, Geller F, Aben K, Stacey S et al (2008) Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 40:1307–1312

    Article  PubMed  CAS  Google Scholar 

  • Kong A, Frigge M, Masson G, Besenbacher S, Sulem P, Magnusson G et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475

    Article  PubMed  CAS  Google Scholar 

  • Krishnaswamy S, Subramaniam K, Ramachandran P, Indran T, Aziz J (2011) Delayed fathering and risk of mental disorders in adult offspring. Early Hum Dev 87:171–175

    Article  PubMed  Google Scholar 

  • Lopez-Castroman J, Gomez D, Carballo Belloso J, Fernandez-Navarro P, Perez-Rodriguez M, Villamor I et al (2009) Differences in maternal and paternal age between schizophrenia and other psychiatric disorders. Schizophr Res 116:184–190

    Article  PubMed  Google Scholar 

  • Lupski J, Stankiewicz P (2005) Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 1:e49

    Article  PubMed  Google Scholar 

  • Malaspina D, Reichenberg A, Weiser M, Fennig S, Davidson M, Harlap S et al (2005) Paternal age and intelligence: implications for age-related genomic changes in male germ cells. Psychiatr Genet 15:117–125

    Article  PubMed  Google Scholar 

  • Marioni J, Thorne N, Valsesia A, Fitzgerald T, Redon R, Fiegler H et al (2007) Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization. Genome Biol 8:R228

    Article  PubMed  Google Scholar 

  • McClellan J, Susser E, King M (2007) Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 190:194–199

    Article  PubMed  Google Scholar 

  • Neale B, Kou Y, Liu L, Ma’ayan A, Samocha K, Sabo A et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245

    Article  PubMed  CAS  Google Scholar 

  • Olsen J, Zhu JL (2009) Re: “Advanced parental age and the risk of autism spectrum disorder”. Am J Epidemiol 169:1406

    Article  PubMed  Google Scholar 

  • O’Roak B, Vives L, Girirajan S, Karakco E, Krumm N, Coe B et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–250

    Article  PubMed  Google Scholar 

  • Pang A, MacDonald J, Pinto D, Wei J, Rafiq M, Conrad D et al (2010) Towards a comprehensive structural variation map of an individual human genome. Genome Biol 11:R52

    Article  PubMed  Google Scholar 

  • Penrose L (1955) Parental age and mutation. Lancet 266:312–313

    Article  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  PubMed  CAS  Google Scholar 

  • Risch N, Reich E, Wishnick M, McCarthy J (1987) Spontaneous mutation and parental age in humans. Am J Hum Genet 41:218–248

    PubMed  CAS  Google Scholar 

  • Sanders S, Murtha M, Gupta A, Murdoch J, Raubeson M, Willsey A et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241

    Article  PubMed  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449

    Article  PubMed  CAS  Google Scholar 

  • Sibbons C, Morris J, Crolla J, Jacobs P, Thomas N (2012) De novo deletions and duplications detected by array CGH: a study of parental origin in relation to mechanisms of formation and size of imbalance. Eur J Hum Genet 20:155–160

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Muller C, Berger R (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80:1420–1430

    Article  PubMed  Google Scholar 

  • Stefansson H, Rujescu D, Cichon S, Pietiläinen OPH, Ingason A, Steinberg S et al (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455:232–236

    Article  PubMed  CAS  Google Scholar 

  • The International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241

    Article  Google Scholar 

  • Thomas N, Durkie M, Potts G, Sandford R, Van Zyl B, Youings S et al (2006) Parental and chromosomal origins of microdeletion and duplication syndromes involving 7q11.23, 15q11-q13 and 22q11. Eur J Hum Genet 14:831–837

    Article  PubMed  CAS  Google Scholar 

  • Thomas N, Morris J, Baptista J, Ng B, Crolla J, Jacobs P (2010) De novo apparently balanced translocations in man are predominantly paternal in origin and associated with a signficant increase in paternal age. J Med Genet 47:112–115

    Article  PubMed  Google Scholar 

  • Tiemann-Boege I, Navidi W, Grewal R, Cohn D, Eskenazi B, Wyrobek A et al (2002) The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. PNAS 99:14952–14957

    Article  PubMed  CAS  Google Scholar 

  • van Es M, van Vught P, Blauw H, Franke L, Saris C, van den Bosch L et al (2008) Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat Genet 40:29–31

    Article  PubMed  Google Scholar 

  • van Es M, Veldink J, Saris C, Blauw H, van Vught P, Birve A et al (2009) Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet 41:1083–1087

    Article  PubMed  Google Scholar 

  • Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, GROUP Consortium, Sabatti C et al (2008) Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 83:504–10

    Google Scholar 

  • Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contribution of the participants. Data was obtained from different studies that were previously supported by The Netherlands Organization for Scientific Research (NWO), the Prinses Beatrix Fonds, VSB Fonds, the Research Institute for Diseases in the Elderly, the Netherlands Genomics Initiative, the National Institute for Mental Health (NIMH), The National Institute for Drug Abuse (NIDA), the European Commission, and the Radboud University Nijmegen Medical Center, the Erasmus Medical Center Rotterdam, and the University Medical Center Utrecht in The Netherlands. We thank Nelson Freimer for critically reading the manuscript. The authors report no biomedical financial interest or potential conflicts of interest.

Conflict of interest

The authors have no conflicts of interest with this work.

Ethical standards

This study complies with the current laws of the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel A. Ophoff.

Additional information

The authors J. E. Buizer-Voskamp, H. M. Blauw and M. P. M. Boks have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buizer-Voskamp, J.E., Blauw, H.M., Boks, M.P.M. et al. Increased paternal age and the influence on burden of genomic copy number variation in the general population. Hum Genet 132, 443–450 (2013). https://doi.org/10.1007/s00439-012-1261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1261-4

Keywords

Navigation