Network medicine: linking disorders

Abstract

The molecular events underlying many human hereditary disorders remain to be discovered despite the significant advances made in molecular biology and genetics in the past years. Given the complexity of cellular systems and the interplay between different functional modules, it is becoming increasingly evident that profound insights into human disease cannot be derived by analyzing single genetic defects. The generation of different types of disease interaction networks has recently emerged as a unifying approach that holds the promise of shedding some light on common pathological mechanisms by placing the single disorders into a larger context. In this review, I summarize the rationale behind these disease networks and different ways of constructing them. Finally, I highlight some of the first results that have been obtained by systematically analyzing the intertwined relationships between human disorders because they suggest that the current disease classification does not always sufficiently reflect biologically and medically relevant disease relationships.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Alternatively, the human phenome has been defined as the set of phenotypes that can be attributed to sequence variations in the human genome in general (Oti et al. 2008) or as the set of all phenotypes manifested by an individual (Auffray et al. 2009; Houle et al. 2010; Mahner and Kary 1997). The focus of this review, however, lies on relationships between disease phenotypes.

  2. 2.

    The term ‘tissue-specific’ co-expression is somewhat misleading in this context as the co-expression must not necessarily be limited to a given tissue. The term ‘within-tissue’ co-expression would be more appropriate.

References

  1. Ala U, Piro RM, Grassi E, Damasco C, Silengo L, Oti M, Provero P, Di Cunto F (2008) Prediction of human disease genes by human-mouse conserved coexpression analysis. PLoS Comput Biol 4:e1000043

    PubMed  Article  Google Scholar 

  2. Aravind L (2000) Guilt by association: contextual information in genome analysis. Genome Res 10:1074–1077

    PubMed  Article  CAS  Google Scholar 

  3. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683

    PubMed  Article  CAS  Google Scholar 

  4. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 2:2

    Article  Google Scholar 

  5. Barabási AL (2007) Network medicine - from obesity to the “diseasome”. N Eng J Med 357:404–407

    PubMed  Article  Google Scholar 

  6. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–115

    PubMed  Article  Google Scholar 

  7. Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    PubMed  Article  Google Scholar 

  8. Barkai N, Shilo BZ (2007) Variability and robustness in biomolecular systems. Mol Cell 28:755–760

    PubMed  Article  CAS  Google Scholar 

  9. Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome-wide expression data of six organisms. PLoS Biol 2:0085–0093

    Article  CAS  Google Scholar 

  10. Blanchini F, Franco E (2011) Structurally robust biological networks. BMC Syst Biol 5:74

    PubMed  Article  Google Scholar 

  11. Bodenreider O (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucl Acids Res 32:D267–D270

    PubMed  Article  CAS  Google Scholar 

  12. Brunner HG, van Driel MA (2004) From syndrome families to functional genomics. Nat Rev Genet 5:545–551

    PubMed  Article  CAS  Google Scholar 

  13. Butte AJ, Kohane IS (2006) Creation and implications of a phenome–genome network. Nat Biotechnol 24:55–62

    PubMed  Article  CAS  Google Scholar 

  14. Clermont G, Auffray C, Moreau Y, Rocke DM, Dalevi D, Dubhashi D, Marshall DR, Raasch P, Dehne F, Provero P, Tegner J, Aronow BJ, Langston MA, Benson M (2009) Bridging the gap between systems biology and medicine. Genome Med 1:88

    PubMed  Article  Google Scholar 

  15. Davis DA, Chawla NV (2011) Exploring and exploiting disease interactions from multi-relational gene and phenotype networks. PLoS One 67:e22670

    Article  Google Scholar 

  16. Dryja TP, Cavenee W, White R, Rapaport JM, Petersen R, Albert DM, Bruns GA (1984) Homozygosity of chromosome 13 in retinoblastoma. N Engl J Med 310(9):550–553

    PubMed  Article  CAS  Google Scholar 

  17. Dudley JT, Deshpande T, Butte AJ (2011) Exploiting drug–disease relationships for computational drug repositioning. Brief Bioinform 12(4):303–311

    PubMed  Article  CAS  Google Scholar 

  18. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823–826

    PubMed  Article  CAS  Google Scholar 

  19. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38:285–293

    PubMed  Article  CAS  Google Scholar 

  20. Gillis J, Pavlidis P (2011) The impact of multifunctional genes on “guilt by association” analysis. PLoS One 6:e17258

    PubMed  Article  CAS  Google Scholar 

  21. Gillis J, Pavlidis P (2012) “Guilt by association” is the exception rather than the rule in gene networks. PLoS Comput Biol 8:e1002444

    PubMed  Article  CAS  Google Scholar 

  22. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690

    PubMed  Article  CAS  Google Scholar 

  23. Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA (2002) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl Acids Res 30:52–55

    PubMed  Article  CAS  Google Scholar 

  24. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Google Scholar 

  25. Hidalgo CA, Blumm N, Barabási AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5:e1000353

    PubMed  Article  Google Scholar 

  26. Hintze A, Adami C (2008) Evolution of complex modular biological networks. PLoS Comput Biol 4:e23

    PubMed  Article  Google Scholar 

  27. Hoehndorf R, Schofield PN, Gkoutos GV (2011) PhenomeNET: a whole-phenome approach to disease gene discovery. Nucl Acids Res 39(18):e119

    PubMed  Article  CAS  Google Scholar 

  28. Holmes AB, Hawson A, Liu F, Friedman C, Khiabanian H, Rabadan R (2011) Discovering disease associations by integrating electronic clinical data and medical literature. PLoS One 6:e21132

    PubMed  Article  CAS  Google Scholar 

  29. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    PubMed  Article  CAS  Google Scholar 

  30. Jiang X, Liu B, Jiang J, Zhao H, Fan M, Zhang J, Fan Z, Jiang T (2008) Modularity in the genetic disease–phenotype network. FEBS Lett 582:2549–2554

    PubMed  Article  CAS  Google Scholar 

  31. Jordan IK, Mariño-Ramirez L, Koonin EV (2005) Evolutionary significance of gene expression divergence. Gene 345:119–126

    PubMed  Article  CAS  Google Scholar 

  32. Kann MG (2010) Advances in translational bioinformatics: computational approaches for the hunting of disease genes. Brief Bioinform 11:96–110

    PubMed  Article  CAS  Google Scholar 

  33. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 102:13773–13778

    PubMed  Article  CAS  Google Scholar 

  34. Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tümer Z, Pociot F, Tommerup N, Moreau Y, Brunak S (2007) A human phenome–interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316

    PubMed  Article  CAS  Google Scholar 

  35. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL (2008) The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci USA 105:9880–9885

    PubMed  Article  CAS  Google Scholar 

  36. Linghu B, DeLisi C (2010) Phenotypic connections in surprising places. Genome Biol 11:116

    PubMed  Article  Google Scholar 

  37. Linghu B, Snitkin ES, Hu Z, Xia Y, DeLisi C (2009) Genome-wide prioritization of disease genes and identification of disease–disease associations from an integrated human functional linkage network. Genome Biol 10:R91

    PubMed  Article  Google Scholar 

  38. Liu YI, Wise PH, Butte AJ (2009) The “etiome”: identification and clustering of human disease etiological factors. BMC Bioinformatics 10(Suppl 2):S14

    PubMed  Article  Google Scholar 

  39. Lu X, Horvitz HR (1998) lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95(7):981–991

    PubMed  Article  CAS  Google Scholar 

  40. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS One 3:e3420

    PubMed  Article  Google Scholar 

  41. Mahner M, Kary M (1997) What exactly are genomes, genotypes and phenotypes? And what about phenomes? J Theor Biol 186:55–63

    PubMed  Article  CAS  Google Scholar 

  42. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402:83–86

    PubMed  Article  CAS  Google Scholar 

  43. McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM (2010) Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci USA 107(14):6544–6549

    PubMed  Article  CAS  Google Scholar 

  44. Miozzi L, Piro RM, Rosa F, Ala U, Silengo L, Di Cunto F, Provero P (2008) Functional annotation and identification of candidate disease genes by computational analysis of normal tissue gene expression data. PLoS One 3:e2439

    PubMed  Article  Google Scholar 

  45. Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu LJ, Danila MI, Feng G, Chisholm RL (2009) Annotating the human genome with Disease Ontology. BMC Genomics 10:S6

    PubMed  Article  Google Scholar 

  46. Oti M, Brunner HG (2007) The modular nature of genetic disease. Clin Genet 71:1–11

    PubMed  Article  CAS  Google Scholar 

  47. Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43:691–698

    PubMed  Article  CAS  Google Scholar 

  48. Oti M, Huynen MA, Brunner HG (2008) Phenome connections. Trends Genet 24:103–106

    PubMed  Article  CAS  Google Scholar 

  49. Pastor-Satorras R, Smith E, Sole RV (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199–210

    PubMed  Article  CAS  Google Scholar 

  50. Pawson T, Linding R (2008) Network medicine. FEBS Lett 582:1266–1270

    PubMed  Article  CAS  Google Scholar 

  51. Pinksy L (1977) The polythetic (phenotype community) system of classifying human malformation syndromes. Birth Defects Orig Artic Ser 13:13–30

    Google Scholar 

  52. Piro RM, Di Cunto F (2012) Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J 279(5):678–696

    PubMed  Article  CAS  Google Scholar 

  53. Piro RM, Ala U, Molineris I, Grassi E, Bracco C, Perego GP, Provero P, Di Cunto F (2011) An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction. Eur J Hum Genet 19:1173–1180

    PubMed  Article  CAS  Google Scholar 

  54. Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11:15–29

    PubMed  Article  CAS  Google Scholar 

  55. Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S (2008) The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet 83:610–615

    PubMed  Article  CAS  Google Scholar 

  56. Rzhetsky A, Wajngurt D, Park N, Zheng T (2007) Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci USA 104:11694–11699

    PubMed  Article  CAS  Google Scholar 

  57. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, Wilbur WJ, Yaschenko E, Ye J (2010) Database resources of the National Center for Biotechnology Information. Nucl Acids Res 38:D5–D16

    PubMed  Article  CAS  Google Scholar 

  58. Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461:218–223

    PubMed  Article  CAS  Google Scholar 

  59. Schadt EE, Björkegren JLM (2012) NEW: network-enabled wisdom in biology, medicine, and health care. Science Transl Med 4:115rv1.

  60. Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound screening. Nature Rev Drug Discov 8:286–295

    Article  CAS  Google Scholar 

  61. Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ (2010) Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 6:e1000662

    PubMed  Article  Google Scholar 

  62. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006) A text-mining analysis of the human phenome. Eur J Hum Genet 14:535–542

    PubMed  Article  Google Scholar 

  63. Van Regenmortel MHV (2004) Reductionism and complexity in molecular biology. EMBO Rep 5:1016–1020

    PubMed  Article  Google Scholar 

  64. Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Cell 144:986–998

    PubMed  Article  CAS  Google Scholar 

  65. Wu X, Liu Q, Jiang R (2009) Align human interactome with phenome to identify causative genes and networks underlying disease families. Bioinformatics 25:98–104

    PubMed  Article  CAS  Google Scholar 

  66. Zaghloul NA, Katsanis N (2010) Functional modules, mutational load and human genetic disease. Trends Genet 26:168–176

    PubMed  Article  CAS  Google Scholar 

  67. Zhang SH, Wu C, Li X, Chen X, Jiang W, Gong BS, Li J, Yan YQ (2010) From phenotype to gene: detecting disease-specific gene functional modules via a text-based human disease phenotype network construction. FEBS Lett 584:3635–3643

    PubMed  Article  CAS  Google Scholar 

  68. Zhang M, Zhu C, Jacomy A, Lu LJ, Jegga AG (2011a) The orphan disease networks. Am J Hum Genet 88:755–766

    PubMed  Article  CAS  Google Scholar 

  69. Zhang X, Zhang R, Jiang Y, Sun P, Tang G, Wang X, Lv H, Li X (2011b) The expanded human disease network combining protein–protein interaction information. Eur J Hum Genet 19:783–788

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Ferdinando Di Cunto and Paolo Provero of the University of Torino, Italy, for critically reading the manuscript and improving it through suggestions and discussions. In addition, the article has drawn benefit from the thoughtful suggestions of the anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rosario M. Piro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piro, R.M. Network medicine: linking disorders. Hum Genet 131, 1811–1820 (2012). https://doi.org/10.1007/s00439-012-1206-y

Download citation

Keywords

  • Unify Medical Language System
  • Shared Environmental Influence
  • Disease Network
  • Human Phenotype Ontology
  • Waardenburg Syndrome