Advertisement

Human Genetics

, Volume 131, Issue 7, pp 1217–1224 | Cite as

NIPA2 located in 15q11.2 is mutated in patients with childhood absence epilepsy

  • Yuwu Jiang
  • Yuehua Zhang
  • Pingping Zhang
  • Tian Sang
  • Feng Zhang
  • Taoyun Ji
  • Qionghui Huang
  • Han Xie
  • Renqian Du
  • Bin Cai
  • Haijuan Zhao
  • Jingmin Wang
  • Ye Wu
  • Husheng Wu
  • Keming Xu
  • Xiaoyan Liu
  • Piu ChanEmail author
  • Xiru WuEmail author
Original Investigation

Abstract

While pathogenic copy number variations (CNVs) in 15q11.2 were recently identified in Caucasian patients with idiopathic generalized epilepsies (IGEs), the epilepsy-associated gene(s) in this region is/are still unknown. Our study investigated whether the CNVs in 15q11.2 are associated with childhood absence epilepsy (CAE) in Chinese patients and whether the selective magnesium transporter NIPA2 gene affected by 15q11.2 microdeletions is a susceptive gene for CAE. We assessed IGE-related CNVs by Affymetrix SNP 5.0 microarrays in 198 patients with CAE and 198 controls from northern China, and verified the identified CNVs by high-density oligonucleotide-based CGH microarrays. The coding region and exon–intron boundaries of NIPA2 were sequenced in all 380 patients with CAE and 400 controls. 15q11.2 microdeletions were detected in 3 of 198 (1.5%) patients and in no controls. Furthermore, we identified point mutations or indel in a heterozygous state of the NIPA2 gene in 3 out of 380 patients, whereas they were absent in 700 controls (P = 0.043). These mutations included two novel missense mutations (c.532A>T, p.I178F; c.731A>G, p.N244S) and one small novel insertion (c.1002_1003insGAT, p.N334_335EinsD). No NIPA2 mutation was found in 400 normal controls. We first identified that NIPA2, encoding a selective magnesium transporter, is a susceptible gene of CAE, and 15q11.2 microdeletions are important pathogenic CNVs for CAE with higher frequency in Chinese populations than that previously reported in Caucasians. The haploinsufficiency of NIPA2 may be a mechanism underlying the neurological phenotypes of 15q11.2 microdeletions.

Keywords

Comparative Genomic Hybridization Allelic Imbalance Idiopathic Generalize Epilepsy Childhood Absence Epilepsy 15q13 Microdeletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by grants from the Ministry of Science and Technology of China (2006AA02A408, 2006CB500701, 2008ZX09312-014, 2011CBA00401). The authors thank Dr. Alexander Merkle and Dr. Yan Dong from Medical school of University of Minnesota, USA and BoldFace Editors, Inc., USA for help with manuscript preparation. We highly appreciate our patients and their families for their participation.

Conflict of interest

None.

References

  1. Ben-Shachar S, Lanpher B, German JR, Qasaymeh M, Potocki L, Nagamani SC, Franco LM, Malphrus A, Bottenfield GW, Spence JE, Amato S, Rousseau JA, Moghaddam B, Skinner C, Skinner SA, Bernes S, Armstrong N, Shinawi M, Stankiewicz P, Patel A, Cheung SW, Lupski JR, Beaudet AL, Sahoo T (2009) Microdeletion 15q13.3: a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. J Med Genet 46:382–388PubMedCrossRefGoogle Scholar
  2. Cao H, Jiang Y, Liu Z, Wu X (2003) The effect of magnesium-free treatment induced recurrent epileptiform discharges on developing cortical neuron in vitro. Dev Brain Res 142:1–6CrossRefGoogle Scholar
  3. Castilla-Guerra L, del Carmen Fernández-Moreno M, López-Chozas JM, Fernández-Bolaños R (2006) Electrolytes disturbances and seizures. Epilepsia 47:1990–1998PubMedCrossRefGoogle Scholar
  4. Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, Yavor A, Eichler EE, Nicholls RD (2003) Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet 73:898–925PubMedCrossRefGoogle Scholar
  5. Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243PubMedCrossRefGoogle Scholar
  6. Czéh G, Somjen GG (1989) Changes in extracellular calcium and magnesium and synaptic transmission in isolated mouse spinal cord. Brain Res 486:274–285PubMedCrossRefGoogle Scholar
  7. D’Arcangelo G, D’Antuono M, Biagini G, Warren R, Tancredi V, Avoli M (2002) Thalamocortical oscillations in a genetic model of absence seizures. Eur J Neurosci 16:2383–2393PubMedCrossRefGoogle Scholar
  8. de Kovel CG, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, Kluck C, Muhle H, von Spiczak S, Ostertag P, Obermeier T, Kleefuss-Lie AA, Hallmann K, Steffens M, Gaus V, Klein KM, Hamer HM, Rosenow F, Brilstra EH, Trenité DK, Swinkels ME, Weber YG, Unterberger I, Zimprich F, Urak L, Feucht M, Fuchs K, Møller RS, Hjalgrim H, De Jonghe P, Suls A, Rückert IM, Wichmann HE, Franke A, Schreiber S, Nürnberg P, Elger CE, Lerche H, Stephani U, Koeleman BP, Lindhout D, Eichler EE, Sander T (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133(Pt 1):23–32PubMedCrossRefGoogle Scholar
  9. Dibbens LM, Mullen S, Helbig I, Mefford HC, Bayly MA, Bellows S, Leu C, Trucks H, Obermeier T, Wittig M, Franke A, Caglayan H, Yapici Z, EPICURE Consortium, Sander T, Eichler EE, Scheffer IE, Mulley JC, Berkovic SF (2009) Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum Mol Genet 18:3626–3631PubMedCrossRefGoogle Scholar
  10. Goytain A, Hines RM, Quamme GA (2008) Functional characterization of NIPA2, a selective Mg2+ transporter. Am J Physiol Cell Physiol 295(4):C944–C953PubMedCrossRefGoogle Scholar
  11. Hannes FD, Sharp AJ, Mefford HC, de Ravel T, Ruivenkamp CA, Breuning MH, Fryns JP, Devriendt K, Van Buggenhout G, Vogels A, Stewart H, Hennekam RC, Cooper GM, Regan R, Knight SJ, Eichler EE, Vermeesch JR (2009) Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet 46:223–232PubMedCrossRefGoogle Scholar
  12. Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, Muhle H, de Kovel C, Baker C, von Spiczak S, Kron KL, Steinich I, Kleefuss-Lie AA, Leu C, Gaus V, Schmitz B, Klein KM, Reif PS, Rosenow F, Weber Y, Lerche H, Zimprich F, Urak L, Fuchs K, Feucht M, Genton P, Thomas P, Visscher F, de Haan GJ, Møller RS, Hjalgrim H, Luciano D, Wittig M, Nothnagel M, Elger CE, Nürnberg P, Romano C, Malafosse A, Koeleman BP, Lindhout D, Stephani U, Schreiber S, Eichler EE, Sander T (2009) 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41:160–162PubMedCrossRefGoogle Scholar
  13. Hughes JR (2009) Absence seizures: a review of recent reports with new concepts. Epilepsy Behav 15:404–412PubMedCrossRefGoogle Scholar
  14. International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241CrossRefGoogle Scholar
  15. Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, Krauss RM, Myers RM, Ridker PM, Chasman DI, Mefford H, Ying P, Nickerson DA, Eichler EE (2009) Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 84:148–161PubMedCrossRefGoogle Scholar
  16. Jallon P, Latour P (2005) Epidemiology of idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):10–14PubMedCrossRefGoogle Scholar
  17. Jiang YH, Wauki K, Liu Q, Bressler J, Pan Y, Kashork CD, Shaffer LG, Beaudet AL (2008) Genomic analysis of the chromosome 15q11-q13 Prader-Willi syndrome region and characterization of transcripts for GOLGA8E and WHCD1L1 from the proximal breakpoint region. BMC Genomics 9:50PubMedCrossRefGoogle Scholar
  18. Lacinova L (2004) Pharmacology of recombinant low-voltage activated calcium channels. Curr Drug Targets CNS Neurol Disord 3:105–111PubMedCrossRefGoogle Scholar
  19. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, Huang S, Maloney VK, Crolla JA, Baralle D, Collins A, Mercer C, Norga K, de Ravel T, Devriendt K, Bongers EM, de Leeuw N, Reardon W, Gimelli S, Bena F, Hennekam RC, Male A, Gaunt L, Clayton-Smith J, Simonic I, Park SM, Mehta SG, Nik-Zainal S, Woods CG, Firth HV, Parkin G, Fichera M, Reitano S, Lo Giudice M, Li KE, Casuga I, Broomer A, Conrad B, Schwerzmann M, Räber L, Gallati S, Striano P, Coppola A, Tolmie JL, Tobias ES, Lilley C, Armengol L, Spysschaert Y, Verloo P, De Coene A, Goossens L, Mortier G, Speleman F, van Binsbergen E, Nelen MR, Hochstenbach R, Poot M, Gallagher L, Gill M, McClellan J, King MC, Regan R, Skinner C, Stevenson RE, Antonarakis SE, Chen C, Estivill X, Menten B, Gimelli G, Gribble S, Schwartz S, Sutcliffe JS, Walsh T, Knight SJ, Sebat J, Romano C, Schwartz CE, Veltman JA, de Vries BB, Vermeesch JR, Barber JC, Willatt L, Tassabehji M, Eichler EE (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 359:1685–1699PubMedCrossRefGoogle Scholar
  20. Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, Franke A, Malafosse A, Genton P, Thomas P, Gurnett CA, Schreiber S, Bassuk AG, Guipponi M, Stephani U, Helbig I, Eichler EE (2010) Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 6(5):e1000962PubMedCrossRefGoogle Scholar
  21. Pastinen T (2010) Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet 11:533–538PubMedCrossRefGoogle Scholar
  22. Rausche G, Igelmund P, Heinemann U (1990) Effects of changes in extracellular potassium, magnesium and calcium concentration on synaptic transmission in area CA1 and the dentate gyrus of rat hippocampal slices. Pflugers Arch 415:588–593PubMedCrossRefGoogle Scholar
  23. Riggs JE (2002) Neurological manifestations of electrolyte disturbances. Neurol Clin 20:227–239PubMedCrossRefGoogle Scholar
  24. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimäki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449PubMedCrossRefGoogle Scholar
  25. Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE, Schroer RJ, Novara F, De Gregori M, Ciccone R, Broomer A, Casuga I, Wang Y, Xiao C, Barbacioru C, Gimelli G, Bernardina BD, Torniero C, Giorda R, Regan R, Murday V, Mansour S, Fichera M, Castiglia L, Failla P, Ventura M, Jiang Z, Cooper GM, Knight SJ, Romano C, Zuffardi O, Chen C, Schwartz CE, Eichler EE (2008) A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 40:322–328PubMedCrossRefGoogle Scholar
  26. Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18(2):74–82PubMedCrossRefGoogle Scholar
  27. Tsang HT, Edwards TL, Wang X, Connell JW, Davies RJ, Durrington HJ, O’Kane CJ, Luzio JP, Reid E (2009) The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signaling. Hum Mol Genet 18:3805–3821PubMedCrossRefGoogle Scholar
  28. van Bon BW, Mefford HC, Menten B, Koolen DA, Sharp AJ, Nillesen WM, Innis JW, de Ravel TJ, Mercer CL, Fichera M, Stewart H, Connell LE, Ounap K, Lachlan K, Castle B, van der Aa N, van Ravenswaaij C, Nobrega MA, Serra-Juhé C, Simonic I, de Leeuw N, Pfundt R, Bongers EM, Baker C, Finnemore P, Huang S, Maloney VK, Crolla JA, van Kalmthout M, Elia M, Vandeweyer G, Fryns JP, Janssens S, Foulds N, Reitano S, Smith K, Parkel S, Loeys B, Woods CG, Oostra A, Speleman F, Pereira AC, Kurg A, Willatt L, Knight SJ, Vermeesch JR, Romano C, Barber JC, Mortier G, Pérez-Jurado LA, Kooy F, Brunner HG, Eichler EE, Kleefstra T, Kleefstra T, de Vries BB (2009) Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet 46:511–523PubMedCrossRefGoogle Scholar
  29. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D, Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL, Daly MJ (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358:667–675PubMedCrossRefGoogle Scholar
  30. Zhao J, Matthies DS, Botzolakis EJ, Macdonald RL, Blakely RD, Hedera P (2008) Hereditary spastic paraplegia-associated mutations in the NIPA1 gene and its Caenorhabditis elegans homolog trigger neural degeneration in vitro and in vivo through a gain-of-function mechanism. J Neurosci 28:13938–13951PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yuwu Jiang
    • 1
  • Yuehua Zhang
    • 1
  • Pingping Zhang
    • 1
  • Tian Sang
    • 1
  • Feng Zhang
    • 2
  • Taoyun Ji
    • 1
  • Qionghui Huang
    • 1
  • Han Xie
    • 1
  • Renqian Du
    • 2
  • Bin Cai
    • 3
  • Haijuan Zhao
    • 1
  • Jingmin Wang
    • 1
  • Ye Wu
    • 1
  • Husheng Wu
    • 4
  • Keming Xu
    • 5
  • Xiaoyan Liu
    • 1
  • Piu Chan
    • 6
    Email author
  • Xiru Wu
    • 1
    Email author
  1. 1.Department of PediatricsPeking University First HospitalBeijingChina
  2. 2.School of Life SciencesFudan UniversityShanghaiChina
  3. 3.CapitalBio Corporation-National Engineering Research Center for Beijing Biochip TechnologyBeijingChina
  4. 4.Beijing Children’s HospitalBeijingChina
  5. 5.Capital Institute of PediatricsBeijingChina
  6. 6.Department of Neurobiology and NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina

Personalised recommendations