Human Genetics

, Volume 131, Issue 7, pp 1123–1135 | Cite as

LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z−) agrin

  • Ricardo A. Maselli
  • Jose M. Fernandez
  • Juan Arredondo
  • Carmen Navarro
  • Maian Ngo
  • David Beeson
  • Órla Cagney
  • D. Colette Williams
  • Robert L. Wollmann
  • Vladimir Yarov-Yarovoy
  • Michael J. FernsEmail author
Original Investigation


We describe a severe form of congenital myasthenic syndrome (CMS) caused by two heteroallelic mutations: a nonsense and a missense mutation in the gene encoding agrin (AGRN). The identified mutations, Q353X and V1727F, are located at the N-terminal and at the second laminin G-like (LG2) domain of agrin, respectively. A motor-point muscle biopsy demonstrated severe disruption of the architecture of the neuromuscular junction (NMJ), including: dispersion and fragmentation of endplate areas with normal expression of acetylcholinesterase; simplification of postsynaptic membranes; pronounced reduction of the axon terminal size; widening of the primary synaptic cleft; and, collection of membranous debris material in the primary synaptic cleft and in the subsynaptic cytoplasm. Expression studies in heterologous cells revealed that the Q353X mutation abolished expression of full-length agrin. Moreover, the V1727F mutation decreased agrin-induced clustering of the acetylcholine receptor (AChR) in cultured C2 muscle cells by >100-fold, and phosphorylation of the MuSK receptor and AChR beta subunit by ~tenfold. Surprisingly, the V1727F mutant also displayed increased binding to α-dystroglycan but decreased binding to a neural (z+) agrin-specific antibody. Our findings demonstrate that agrin mutations can associate with a severe form of CMS and cause profound distortion of the architecture and function of the NMJ. The impaired ability of V1727F agrin to activate MuSK and cluster AChRs, together with its increased affinity to α-dystroglycan, mimics non-neural (z−) agrin and are important determinants of the pathogenesis of the disease.


Compound Muscle Action Potential AChR Cluster Congenital Myasthenic Syndrome Pyridostigmine Bromide Membranous Debris 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Mary Edwards for providing editorial help. This work was supported by the National Institutes of Health (Grant R01NS049117-01); the Muscular Dystrophy Association of America; and the Myasthenia Gravis Foundation of California; and grants FIS PI10/02628 and RD09/0076/00011 from “Instituto de Salud Carlos III, Fondo de Investigación Sanitaria”, Madrid, Spain. Part of the study was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR17348-01 from the National Center for Research Resources, National Institutes of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

439_2011_1132_MOESM1_ESM.tif (444 kb)
Supplementary material 1 (TIFF 443 kb)


  1. Anderson JA, Ng JJ, Bowe C, McDonald C, Richman DP, Wollmann RL, Maselli RA (2008) Variable phenotypes associated with mutations in DOK7. Muscle Nerve 37(4):448–456. doi: 10.1002/mus.20944 PubMedCrossRefGoogle Scholar
  2. Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA (2008) Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 22(5):1356–1368. doi: 10.1096/ PubMedCrossRefGoogle Scholar
  3. Bogdanik LP, Burgess RW (2011) A valid mouse model of AGRIN-associated congenital myasthenic syndrome. Hum Mol Genet. doi: 10.1093/hmg/ddr396
  4. Burgess RW, Nguyen QT, Son YJ, Lichtman JW, Sanes JR (1999) Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23(1):33–44PubMedCrossRefGoogle Scholar
  5. Burgess RW, Dickman DK, Nunez L, Glass DJ, Sanes JR (2002) Mapping sites responsible for interactions of agrin with neurons. J Neurochem 83(2):271–284PubMedCrossRefGoogle Scholar
  6. Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, Prioleau C, Herbst R, Goillot E, Ioos C, Azulay JP, Attarian S, Leroy JP, Fournier E, Legay C, Schaeffer L, Koenig J, Fardeau M, Eymard B, Pouget J, Hantai D (2004) MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet 13(24):3229–3240. doi: 10.1093/hmg/ddh333 PubMedCrossRefGoogle Scholar
  7. Cole RN, Reddel SW, Gervasio OL, Phillips WD (2008) Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Ann Neurol 63(6):782–789. doi: 10.1002/ana.21371 PubMedCrossRefGoogle Scholar
  8. Engel AG (2006) Light on limb-girdle myasthenia. Brain 129(Pt 8):1938–1939. doi: 10.1093/brain/awl198 PubMedCrossRefGoogle Scholar
  9. Engel AG, Lambert EH, Gomez MR (1977) A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann Neurol 1(4):315–330. doi: 10.1002/ana.410010403 PubMedCrossRefGoogle Scholar
  10. Ferns M, Hoch W, Campanelli JT, Rupp F, Hall ZW, Scheller RH (1992) RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron 8:1079–1086PubMedCrossRefGoogle Scholar
  11. Ferns MJ, Campanelli JT, Hoch W, Scheller RH, Hall Z (1993) The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron 11(3):491–502PubMedCrossRefGoogle Scholar
  12. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85(4):525–535PubMedCrossRefGoogle Scholar
  13. Gesemann M, Denzer AJ, Ruegg MA (1995) Acetylcholine receptor aggregating activity of agrin isoforms and mapping of the active site. J Cell Biol 128(4):625–636PubMedCrossRefGoogle Scholar
  14. Gesemann M, Cavalli V, Denzer AJ, Brancaccio A, Schumacher B, Ruegg MA (1996) Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron 16(4):755–767PubMedCrossRefGoogle Scholar
  15. Gingras J, Rassadi S, Cooper E, Ferns M (2002) Agrin plays an organizing role in the formation of sympathetic synapses. J Cell Biol 158(6):1109–1118PubMedCrossRefGoogle Scholar
  16. Gingras J, Rassadi S, Cooper E, Ferns M (2007) Synaptic transmission is impaired at neuronal autonomic synapses in agrin-null mice. Dev Neurobiol 67(5):521–534PubMedCrossRefGoogle Scholar
  17. Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, Distefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD (1996) Agrin acts via a MuSK receptor complex. Cell 85(4):513–523PubMedCrossRefGoogle Scholar
  18. Hantai D, Richard P, Koenig J, Eymard B (2004) Congenital myasthenic syndromes. Curr Opin Neurol 17(5):539–551. doi: 00019052-200410000-00004[pii] PubMedCrossRefGoogle Scholar
  19. Hilgenberg LG, Su H, Gu H, O’Dowd DK, Smith MA (2006) Alpha3Na+/K+-ATPase is a neuronal receptor for agrin. Cell 125(2):359–369. doi: 10.1016/j.cell.2006.01.052 PubMedCrossRefGoogle Scholar
  20. Hoch W, Campanelli JT, Harrison S, Scheller RH (1994) Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. EMBO J 13(12):2814–2821PubMedGoogle Scholar
  21. Huze C, Bauche S, Richard P, Chevessier F, Goillot E, Gaudon K, Ben Ammar A, Chaboud A, Grosjean I, Lecuyer HA, Bernard V, Rouche A, Alexandri N, Kuntzer T, Fardeau M, Fournier E, Brancaccio A, Ruegg MA, Koenig J, Eymard B, Schaeffer L, Hantai D (2009) Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 85(2):155–167. doi: 10.1016/j.ajhg.2009.06.015 PubMedCrossRefGoogle Scholar
  22. Jacobson C, Montanaro F, Lindenbaum M, Carbonetto S, Ferns M (1998) Alpha-dystroglycan functions in acetylcholine receptor aggregation but is not a coreceptor for agrin-MuSK signaling. J Neurosci 18(16):6340–6348PubMedGoogle Scholar
  23. Karnovsky MJ (1964) The localization of cholinesterase activity in rat cardiac muscle by electron microscopy. J Cell Biol 23:217–232PubMedCrossRefGoogle Scholar
  24. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135(2):334–342. doi: 10.1016/j.cell.2008.10.002 PubMedCrossRefGoogle Scholar
  25. Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, Jucker M, Arber S, Caroni P, Sanes JR, Bettler B, Ruegg MA (2007) Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci 27(27):7183–7195. doi: 10.1523/JNEUROSCI.1609-07.2007 PubMedCrossRefGoogle Scholar
  26. Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410(6832):1057–1064PubMedCrossRefGoogle Scholar
  27. Lin W, Dominguez B, Yang J, Aryal P, Brandon EP, Gage FH, Lee KF (2005) Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46(4):569–579PubMedCrossRefGoogle Scholar
  28. Martin AO, Alonso G, Guerineau NC (2005) Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis. J Cell Biol 169(3):503–514PubMedCrossRefGoogle Scholar
  29. Maselli RA, Ng JJ, Anderson JA, Cagney O, Arredondo J, Williams C, Wessel HB, Abdel-Hamid H, Wollmann RL (2009) Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J Med Genet 46(3):203–208. doi: 10.1136/jmg.2008.063693 PubMedCrossRefGoogle Scholar
  30. Maselli RA, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, Gerke BJ, Soliven B, Wollmann RL (2010) Mutations in MUSK causing congenital myasthenic syndrome impair MuSK–Dok-7 interaction. Hum Mol Genet 19(12):2370–2379. doi: 10.1093/hmg/ddq110 PubMedCrossRefGoogle Scholar
  31. Matsumoto-Miyai K, Sokolowska E, Zurlinden A, Gee CE, Luscher D, Hettwer S, Wolfel J, Ladner AP, Ster J, Gerber U, Rulicke T, Kunz B, Sonderegger P (2009) Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell 136(6):1161–1171. doi: 10.1016/j.cell.2009.02.034 PubMedCrossRefGoogle Scholar
  32. Misgeld T, Kummer TT, Lichtman JW, Sanes JR (2005) Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc Natl Acad Sci USA 102(31):11088–11093PubMedCrossRefGoogle Scholar
  33. Muller JS, Herczegfalvi A, Vilchez JJ, Colomer J, Bachinski LL, Mihaylova V, Santos M, Schara U, Deschauer M, Shevell M, Poulin C, Dias A, Soudo A, Hietala M, Aarimaa T, Krahe R, Karcagi V, Huebner A, Beeson D, Abicht A, Lochmuller H (2007) Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain 130(Pt 6):1497–1506. doi: 10.1093/brain/awm068 PubMedCrossRefGoogle Scholar
  34. Ngo ST, Noakes PG, Phillips WD (2007) Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol 39(5):863–867PubMedCrossRefGoogle Scholar
  35. Palace J, Lashley D, Newsom-Davis J, Cossins J, Maxwell S, Kennett R, Jayawant S, Yamanashi Y, Beeson D (2007) Clinical features of the DOK7 neuromuscular junction synaptopathy. Brain 130(Pt 6):1507–1515. doi: 10.1093/brain/awm072 PubMedCrossRefGoogle Scholar
  36. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2(11):791–805PubMedCrossRefGoogle Scholar
  37. Slater CR, Fawcett PR, Walls TJ, Lyons PR, Bailey SJ, Beeson D, Young C, Gardner-Medwin D (2006) Pre- and post-synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with ‘limb-girdle myasthenia’. Brain 129(Pt 8):2061–2076. doi: 10.1093/brain/awl200 PubMedCrossRefGoogle Scholar
  38. Stetefeld J, Alexandrescu AT, Maciejewski MW, Jenny M, Rathgeb-Szabo K, Schulthess T, Landwehr R, Frank S, Ruegg MA, Kammerer RA (2004) Modulation of agrin function by alternative splicing and Ca2+ binding. Structure 12(3):503–515. doi: 10.1016/j.str.2004.02.001 PubMedCrossRefGoogle Scholar
  39. Sugiyama J, Bowen DC, Hall ZW (1994) Dystroglycan binds nerve and muscle agrin. Neuron 13:1–20CrossRefGoogle Scholar
  40. Vitkup D, Sander C, Church GM (2003) The amino-acid mutational spectrum of human genetic disease. Genome Biol 4 (11):R72. doi: 10.1186/gb-2003-4-11-r72
  41. Vohra BP, Groshong JS, Maselli RA, Verity MA, Wollmann RL, Gomez CM (2004) Focal caspase activation underlies the endplate myopathy in slow-channel syndrome. Ann Neurol 55(3):347–352. doi: 10.1002/ana.10823 PubMedCrossRefGoogle Scholar
  42. Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM, Birchmeier C, Burden SJ (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30(2):399–410PubMedCrossRefGoogle Scholar
  43. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L (2008) LRP4 serves as a coreceptor of agrin. Neuron 60(2):285–297. doi: 10.1016/j.neuron.2008.10.006 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ricardo A. Maselli
    • 1
  • Jose M. Fernandez
    • 2
  • Juan Arredondo
    • 1
  • Carmen Navarro
    • 3
  • Maian Ngo
    • 1
  • David Beeson
    • 4
  • Órla Cagney
    • 1
  • D. Colette Williams
    • 5
  • Robert L. Wollmann
    • 6
  • Vladimir Yarov-Yarovoy
    • 7
  • Michael J. Ferns
    • 7
    • 8
    Email author
  1. 1.Department of NeurologyUniversity of California DavisDavisUSA
  2. 2.Service of Clinical NeurophysiologyUniversity Hospital of VigoVigo (Pontevedra)Spain
  3. 3.Department of PathologyUniversity Hospital of Vigo and CIBERER (Centro de Investigacion Biomedica en Red en Enfermedades Raras)Vigo (Pontevedra)Spain
  4. 4.Neurosciences Group, Weatherall Institute of Molecular MedicineUniversity of Oxford, John Radcliffe HospitalOxfordUK
  5. 5.Veterinary Medical Teaching HospitalUniversity of California DavisDavisUSA
  6. 6.Department of PathologyUniversity of ChicagoChicagoUSA
  7. 7.Department of Physiology and Membrane BiologyUniversity of California DavisDavisUSA
  8. 8.Department of AnesthesiologyUniversity of California DavisDavisUSA

Personalised recommendations