Human Genetics

, Volume 131, Issue 6, pp 977–1008 | Cite as

Zebrafish: a model for the study of addiction genetics

  • Eric W. Klee
  • Henning Schneider
  • Karl J. Clark
  • Margot A. Cousin
  • Jon O. Ebbert
  • W. Michael Hooten
  • Victor M. Karpyak
  • David O. Warner
  • Stephen C. Ekker
Review Paper

Abstract

Drug abuse and dependence are multifaceted disorders with complex genetic underpinnings. Identifying specific genetic correlates is challenging and may be more readily accomplished by defining endophenotypes specific for addictive disorders. Symptoms and syndromes, including acute drug response, consumption, preference, and withdrawal, are potential endophenotypes characterizing addiction that have been investigated using model organisms. We present a review of major genes involved in serotonergic, dopaminergic, GABAergic, and adrenoreceptor signaling that are considered to be directly involved in nicotine, opioid, cannabinoid, and ethanol use and dependence. The zebrafish genome encodes likely homologs of the vast majority of these loci. We also review the known expression patterns of these genes in zebrafish. The information presented in this review provides support for the use of zebrafish as a viable model for studying genetic factors related to drug addiction. Expansion of investigations into drug response using model organisms holds the potential to advance our understanding of drug response and addiction in humans.

References

  1. Ackerman KM, Nakkula R, Zirger JM, Beattie CE, Boyd RT (2009) Cloning and spatiotemporal expression of zebrafish neuronal nicotinic acetylcholine receptor alpha 6 and alpha 4 subunit RNAs. Dev Dyn 238:980–992. doi:10.1002/dvdy.21912 PubMedGoogle Scholar
  2. ACS ACS (2010) Cancer Facts and Figures 2010. American Cancer Society, AtlantaGoogle Scholar
  3. Agrawal A, Pergadia ML, Balasubramanian S, Saccone SF, Hinrichs AL, Saccone NL, Breslau N, Johnson EO, Hatsukami D, Martin NG, Montgomery GW, Goate AM, Rice JP, Bierut LJ, Madden PA (2009) Further evidence for an association between the gamma-aminobutyric acid receptor A, subunit 4 genes on chromosome 4 and Fagerstrom Test for Nicotine Dependence. Addiction 104:471–477. doi:10.1111/j.1360-0443.2008.02445.x PubMedGoogle Scholar
  4. Alderman SL, Bernier NJ (2007) Localization of corticotropin-releasing factor, urotensin I, and CRF-binding protein gene expression in the brain of the zebrafish, Danio rerio. J Comp Neurol 502:783–793. doi:10.1002/cne.21332 PubMedGoogle Scholar
  5. Alexander SP, Mathie A, Peters JA (2008) Guide to receptors and channels (GRAC), 3rd edn. Br J Pharmacol 153(Suppl 2):S1–209. doi:10.1038/sj.bjp.0707746
  6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2 PubMedGoogle Scholar
  7. Alvarez FA, Rodriguez-Martin I, Gonzalez-Nuñez V, de Velasco EMF, Gonzalez Sarmiento R, Rodríguez RE (2006) New kappa opioid receptor from zebrafish Danio rerio. Neurosci Lett 405:94–99. doi:10.1016/j.neulet.2006.06.028 PubMedGoogle Scholar
  8. Arias A, Feinn R, Kranzler HR (2006) Association of an Asn40Asp (A118G) polymorphism in the mu-opioid receptor gene with substance dependence: a meta-analysis. Drug Alcohol Depend 83:262–268. doi:10.1016/j.drugalcdep.2005.11.024 PubMedGoogle Scholar
  9. Baraldi PG, Preti D, Materazzi S, Geppetti P (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem 53:5085–5107. doi:10.1021/jm100062h PubMedGoogle Scholar
  10. Bart G, Heilig M, LaForge KS, Pollak L, Leal SM, Ott J, Kreek MJ (2004) Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiatry 9:547–549. doi:10.1038/sj.mp.4001504 PubMedGoogle Scholar
  11. Bellipanni G, Rink E, Bally-Cuif L (2002) Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Mech Dev 119(Suppl 1):S215–S220PubMedGoogle Scholar
  12. Blin M, Norton W, Bally-Cuif L, Vernier P (2008) NR4A2 controls the differentiation of selective dopaminergic nuclei in the zebrafish brain. Mol Cell Neurosci 39:592–604. doi:10.1016/j.mcn.2008.08.006 PubMedGoogle Scholar
  13. Boehmler W, Carr T, Thisse C, Thisse B, Canfield VA, Levenson R (2007) D4 Dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behaviour. Genes Brain Behav 6:155–166. doi:10.1111/j.1601-183X.2006.00243.x PubMedGoogle Scholar
  14. Boehmler W, Obrecht-Pflumio S, Canfield V, Thisse C, Thisse B, Levenson R (2004) Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev Dyn 230:481–493. doi:10.1002/dvdy.20075 Google Scholar
  15. Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E, Sala M (2007) Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology 190:441–448. doi:10.1007/s00213-006-0639-1 PubMedGoogle Scholar
  16. Bretaud S, Li Q, Lockwood BL, Kobayashi K, Lin E, Guo S (2007) A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 146:1109–1116. doi:10.1016/j.neuroscience.2006.12.073 PubMedGoogle Scholar
  17. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308. doi:10.1038/387303a0 PubMedGoogle Scholar
  18. Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153:240–251. doi:10.1038/sj.bjp.0707584 PubMedGoogle Scholar
  19. Cachat J, Canavello P, Elegante M, Bartels B, Hart P, Bergner C, Egan R, Duncan A, Tien D, Chung A, Wong K, Goodspeed J, Tan J, Grimes C, Elkhayat S, Suciu C, Rosenberg M, Chung KM, Kadri F, Roy S, Gaikwad S, Stewart A, Zapolsky I, Gilder T, Mohnot S, Beeson E, Amri H, Zukowska Z, Soignier RD, Kalueff AV (2010) Modeling withdrawal syndrome in zebrafish. Behav Brain Res 208:371–376. doi:10.1016/j.bbr.2009.12.004 PubMedGoogle Scholar
  20. Campa D, Gioia A, Tomei A, Poli P, Barale R (2008) Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 83:559–566. doi:10.1038/sj.clpt.6100385 PubMedGoogle Scholar
  21. Carbone D (1992) Smoking and cancer. Am J Med 93:13S–17SPubMedGoogle Scholar
  22. Caron SJC, Prober D, Choy M, Schier AF (2008) In vivo birthdating by BAPTISM reveals that trigeminal sensory neuron diversity depends on early neurogenesis. Development (Cambridge) 135:3259–3269. doi:10.1242/dev.023200 Google Scholar
  23. Caudill-Slosberg MA, Schwartz LM, Woloshin S (2004) Office visits and analgesic prescriptions for musculoskeletal pain in US: 1980 vs. 2000. Pain 109:514–519PubMedGoogle Scholar
  24. Center for Disease Control, Prevention (2007) Unintentional poisoning deaths–United States, 1999–2004. MMWR Morb Mortal Wkly Rep 56:93–96Google Scholar
  25. Chandrasekar G, Lauter G, Hauptmann G (2007) Distribution of corticotropin-releasing hormone in the developing zebrafish brain. J Comp Neurol 505:337–351. doi:10.1002/cne.21496 PubMedGoogle Scholar
  26. Changeux J-P (2010) Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 11:389–401. doi:10.1038/nrn2849 PubMedGoogle Scholar
  27. Charlton ME, Sweetnam PM, Fitzgerald LW, Terwilliger RZ, Nestler EJ, Duman RS (1997) Chronic ethanol administration regulates the expression of GABAA receptor alpha 1 and alpha 5 subunits in the ventral tegmental area and hippocampus. J Neurochem 68:121–127PubMedGoogle Scholar
  28. Chen Y-C, Peng G-S, Wang M-F, Tsao T-P, Yin S-J (2009a) Polymorphism of ethanol-metabolism genes and alcoholism: correlation of allelic variations with the pharmacokinetic and pharmacodynamic consequences. Chemico Biol Interact 178:2–7. doi:10.1016/j.cbi.2008.10.029 Google Scholar
  29. Chen Y-C, Priyadarshini M, Panula P (2009b) Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafish. Histochem Cell Biol 132:375–381. doi:10.1007/s00418-009-0619-8 PubMedGoogle Scholar
  30. Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J (2006) HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Biol 294:482–496. doi:10.1016/j.ydbio.2006.03.018 PubMedGoogle Scholar
  31. Chou WY, Yang LC, Lu HF, Ko JY, Wang CH, Lin SH, Lee TH, Concejero A, Hsu CJ (2006) Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 50:787–792. doi:10.1111/j.1399-6576.2006.01058.x PubMedGoogle Scholar
  32. Civelli O, Bunzow JR, Grandy DK (1993) Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol 33:281–307. doi:10.1146/annurev.pa.33.040193.001433 PubMedGoogle Scholar
  33. Clark KJ, Balciunas D, Pogoda H-M, Ding Y, Westcot SE, Bedell VM, Greenwood TM, Urban MD, Skuster KJ, Petzold AM, Ni J, Nielsen AL, Patowary A, Scaria V, Sivasubbu S, Xu X, Hammerschmidt M, Ekker SC (2011a) In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Method 8:506–515. doi:10.1038/nmeth.1606 Google Scholar
  34. Clark KJ, Boczek NJ, Ekker SC (2011b) Stressing zebrafish for behavioral genetics. Rev Neurosci 22:49–62. doi:10.1515/RNS.2011.007 PubMedGoogle Scholar
  35. Corbett D, Wise RA (1980) Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: a moveable electrode mapping study. Brain Res 185:1–15PubMedGoogle Scholar
  36. Cox JA, Kucenas S, Voigt MM (2005) Molecular characterization and embryonic expression of the family of N-methyl-d-aspartate receptor subunit genes in the zebrafish. Dev Dyn 234:756–766. doi:10.1002/dvdy.20532 PubMedGoogle Scholar
  37. Crawford DK, Trudell JR, Bertaccini EJ, Li K, Davies DL, Alkana RL (2007) Evidence that ethanol acts on a target in Loop 2 of the extracellular domain of alpha1 glycine receptors. J Neurochem 102:2097–2109. doi:10.1111/j.1471-4159.2007.04680.x PubMedGoogle Scholar
  38. Cunningham D, Hawthorn J, Pople A, Gazet JC, Ford HT, Challoner T, Coombes RC (1987) Prevention of emesis in patients receiving cytotoxic drugs by GR38032F, a selective 5-HT3 receptor antagonist. Lancet 1:1461–1463PubMedGoogle Scholar
  39. Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98:11691–11696. doi:10.1073/pnas.191380698 PubMedGoogle Scholar
  40. De Petrocellis L, Orlando P, Moriello AS, Aviello G, Stott C, Izzo A, Di Marzo V (2011) Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol (Oxf). doi:10.1111/j.1748-1716.2011.02338.x
  41. Devignot V, Prado de Carvalho L et al (2003) A novel glycine receptor alpha Z1 subunit variant in the zebrafish brain. Neuroscience 122(2):449–457Google Scholar
  42. De Witte P (2004) Imbalance between neuroexcitatory and neuroinhibitory amino acids causes craving for ethanol. Addict Behav 29:1325–1339. doi:10.1016/j.addbeh.2004.06.020 PubMedGoogle Scholar
  43. Delgado L, Schmachtenberg O (2008) Immunohistochemical localization of GABA, GAD65, and the receptor subunits GABAAalpha1 and GABAB1 in the zebrafish cerebellum. Cerebellum 7:444–450. doi:10.1007/s12311-008-0047-7 PubMedGoogle Scholar
  44. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International union of pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592PubMedGoogle Scholar
  45. Dick DM, Edenberg HJ, Xuei X, Goate A, Hesselbrock V, Schuckit M, Crowe R, Foroud T (2005) No association of the GABAA receptor genes on chromosome 5 with alcoholism in the collaborative study on the genetics of alcoholism sample. Am J Med Genet B Neuropsychiatr Genet 132B:24–28PubMedGoogle Scholar
  46. Dick DM, Edenberg HJ, Xuei X, Goate A, Kuperman S, Schuckit M, Crowe R, Smith TL, Porjesz B, Begleiter H, Foroud T (2004) Association of GABRG3 with alcohol dependence. Alcohol Clin Exp Res 28:4–9PubMedGoogle Scholar
  47. Djoussé L, Lee I-M, Buring JE, Gaziano JM (2009) Alcohol consumption and risk of cardiovascular disease and death in women: potential mediating mechanisms. Circulation 120:237–244. doi:10.1161/CIRCULATIONAHA.108.832360 PubMedGoogle Scholar
  48. Doldan MJ, Prego B, Holmqvist BI, de Miguel E (1999) Distribution of GABA-immunolabeling in the early zebrafish (Danio rerio) brain. Eur J Morphol 37:126–129PubMedGoogle Scholar
  49. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708. doi:10.1038/nbt1409 PubMedGoogle Scholar
  50. Drakenberg K, Nikoshkov A, Horvath MC, Fagergren P, Gharibyan A, Saarelainen K, Rahman S, Nylander I, Bakalkin G, Rajs J, Keller E, Hurd YL (2006) Mu opioid receptor A118G polymorphism in association with striatal opioid neuropeptide gene expression in heroin abusers. Proc Natl Acad Sci USA 103:7883–7888. doi:10.1073/pnas.0600871103 PubMedGoogle Scholar
  51. Dresen S, Ferreirós N, Pütz M, Westphal F, Zimmermann R, Auwärter V (2010) Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom 45:1186–1194. doi:10.1002/jms.1811 PubMedGoogle Scholar
  52. Durrant R, Thakker J (2003) Substance use and abuse: cultural and historical perspectives. Sage Publications, Thousand OaksGoogle Scholar
  53. Dworkin S, Heath JK, deJong-Curtain TA, Hogan BM, Lieschke GJ, Malaterre J, Ramsay RG, Mantamadiotis T (2007) CREB activity modulates neural cell proliferation, midbrain-hindbrain organization and patterning in zebrafish. Dev Biol 307:127–141. doi:10.1016/j.ydbio.2007.04.026 Google Scholar
  54. Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO, Crowe RR, Goate A, Hesselbrock V, Jones K, Kwon J, Li TK, Nurnberger JI Jr, O’Connor SJ, Reich T, Rice J, Schuckit MA, Porjesz B, Foroud T, Begleiter H (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74:705–714 Epub 2004 Mar 12PubMedGoogle Scholar
  55. Edenberg HJ, Foroud T (2006) The genetics of alcoholism: identifying specific genes through family studies. Addict Biol 11:386–396PubMedGoogle Scholar
  56. El-Alfy AT, Ivey K, Robinson K, Ahmed S, Radwan M, Slade D, Khan I, ElSohly M, Ross S (2010) Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol Biochem Behav 95:434–442. doi:10.1016/j.pbb.2010.03.004 PubMedGoogle Scholar
  57. Elphick MR, Egertová M (2001) The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 356:381–408. doi:10.1098/rstb.2000.0787 PubMedGoogle Scholar
  58. Enoch M-A, Gorodetsky E, Hodgkinson C, Roy A, Goldman D (2010) Functional genetic variants that increase synaptic serotonin and 5-HT3 receptor sensitivity predict alcohol and drug dependence. Mol Psychiatry. doi:10.1038/mp.2010.94
  59. Enoch M-A, Schuckit MA, Johnson BA, Goldman D (2003) Genetics of alcoholism using intermediate phenotypes. Alcohol Clin Exp Res 27:169–176PubMedGoogle Scholar
  60. Farris SP, Miles MF (2011) Ethanol modulation of gene networks: implications for alcoholism. Neurobiol Dis. doi:10.1016/j.nbd.2011.04.013
  61. Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS genetics 1:66–71. doi:10.1371/journal.pgen.0010005 PubMedGoogle Scholar
  62. Filippi A, Dürr K, Ryu S, Willaredt M, Holzschuh J, Driever W (2007) Expression and function of nr4a2, lmx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development. BMC Dev Biol 7:135. doi:10.1186/1471-213X-7-135 PubMedGoogle Scholar
  63. Fillingim RB, Kaplan L, Staud R, Ness TJ, Glover TL, Campbell CM, Mogil JS, Wallace MR (2005) The A118G single nucleotide polymorphism of the mu-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J Pain 6:159–167. doi:10.1016/j.jpain.2004.11.008 PubMedGoogle Scholar
  64. Foley JE, Yeh J-RJ, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PloS one 4:e4348. doi:10.1371/journal.pone.0004348 PubMedGoogle Scholar
  65. Franke P, Nothen MM, Wang T, Neidt H, Knapp M, Lichtermann D, Weiffenbach O, Mayer P, Hollt V, Propping P, Maier W (1999) Human delta-opioid receptor gene and susceptibility to heroin and alcohol dependence. Am J Med Genet 88:462–464. doi:10.1002/(SICI)1096-8628(19991015)88:5<462::AID-AJMG4>3.0.CO;2-S PubMedGoogle Scholar
  66. Gerra G, Leonardi C, Cortese E, D’Amore A, Lucchini A, Strepparola G, Serio G, Farina G, Magnelli F, Zaimovic A, Mancini A, Turci M, Manfredini M, Donnini C (2007) Human kappa opioid receptor gene (OPRK1) polymorphism is associated with opiate addiction. Am J Med Genet B Neuropsychiatr Genet 144B:771–775. doi:10.1002/ajmg.b.30510 PubMedGoogle Scholar
  67. Goldman D, Oroszi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Genet 6:521–532. doi:10.1038/nrg1635 PubMedGoogle Scholar
  68. Gonzalez G, Oliveto A, Kosten TR (2002) Treatment of heroin (diamorphine) addiction: current approaches and future prospects. Drugs 62:1331–1343PubMedGoogle Scholar
  69. Gonzalez-Nuñez V, Barrallo A, Traynor JR, Rodríguez RE (2006) Characterization of opioid-binding sites in zebrafish brain. J Pharmacol Exp Ther 316:900–904. doi:10.1124/jpet.105.093492 PubMedGoogle Scholar
  70. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645PubMedGoogle Scholar
  71. Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M (2007) Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol 74:1102–1111. doi:10.1016/j.bcp.2007.05.023 PubMedGoogle Scholar
  72. Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491. doi:10.1016/j.tips.2006.07.004 PubMedGoogle Scholar
  73. Gould TD, Gottesman II (2006) Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 5:113–119. doi:10.1111/j.1601-183X.2005.00186.x PubMedGoogle Scholar
  74. Gruber AJ, Pope HG et al (2003) Attributes of long-term heavy cannabis users: a case-control study. Psychol Med 33(8):1415–1422Google Scholar
  75. Guo S, Brush J, Teraoka H, Goddard A, Wilson SW, Mullins MC, Rosenthal A (1999) Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 24:555–566PubMedGoogle Scholar
  76. Hall AJ, Logan JE, Toblin RL, Kaplan JA, Kraner JC, Bixler D, Crosby AE, Paulozzi LJ (2008) Patterns of abuse among unintentional pharmaceutical overdose fatalities. JAMA 300:2613–2620PubMedGoogle Scholar
  77. Hanchar HJ, Chutsrinopkun P, Meera P, Supavilai P, Sieghart W, Wallner M, Olsen RW (2006) Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15–4513 to alpha4/6beta3delta GABAA receptors. Proc Natl Acad Sci USA 103:8546–8551. doi:10.1073/pnas.0509903103 PubMedGoogle Scholar
  78. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213. doi:10.1016/j.bbr.2008.03.020 PubMedGoogle Scholar
  79. Harris RA, Trudell JR, Mihic SJ (2008) Ethanol’s molecular targets. Sci Signal 1:re7. doi:10.1126/scisignal.128re7
  80. Harwood HJ, Fountain D, Livermore G (1998) Economic costs of alcohol abuse and alcoholism. Recent Dev Alcohol 14:307–330Google Scholar
  81. Hayes DJ, Greenshaw AJ (2011) 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev 35:1419–1449. doi:10.1016/j.neubiorev.2011.03.005 PubMedGoogle Scholar
  82. Heinrich G, Pagtakhan CJ (2004) Both 5′ and 3′ flanks regulate Zebrafish brain-derived neurotrophic factor gene expression. BMC Neurosci 5:19. doi:10.1186/1471-2202-5-19 PubMedGoogle Scholar
  83. Hirata H, Saint-Amant L et al (2005) Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit. Proc Nat Acad Sci USA 102(23):8345–8350Google Scholar
  84. Holzschuh J, Ryu S, Aberger F, Driever W (2001) Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech Dev 101:237–243PubMedGoogle Scholar
  85. Howard LA, Ahluwalia JS, Lin S-K, Sellers EM, Tyndale RF (2003) CYP2E1*1D regulatory polymorphism: association with alcohol and nicotine dependence. Pharmacogenetics 13:321–328. doi:10.1097/01.fpc.0000054090.48725.a2 PubMedGoogle Scholar
  86. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554PubMedGoogle Scholar
  87. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700. doi:10.1038/nbt.1939 PubMedGoogle Scholar
  88. Hwang J, Kim H-S, Seok J-W, Kim J-D, Koun S, Park S-Y, Lee J, Kim HS, Kim H-S, Kim KS, Chang K-T, Ryoo ZY, Wang SM, Huh T-l, Lee S (2009) Transcriptome analysis of the zebrafish mind bomb mutant. Mol Genet Genom 281:77–85. doi:10.1007/s00438-008-0395-5 Google Scholar
  89. Imboden M, Devignot V et al (2001) Regional distribution of glycine receptor messenger RNA in the central nervous system of zebrafish. Neuroscience 103(3):811–830Google Scholar
  90. Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229PubMedGoogle Scholar
  91. Jaffe JH, Kanzler M (1979) Smoking as an addictive disorder. In: Krasnegor NA (ed) Cigarette smoking as a dependence process. NIDA research monograph series, vol 23. U.S. Government Printing Office, ADM:79–800, Washington, DC, pp 4–23Google Scholar
  92. Jao L-E, Maddison L, Chen W, Burgess SM (2008) Using retroviruses as a mutagenesis tool to explore the zebrafish genome. Briefings Funct Genom Proteom 7:427–443. doi:10.1093/bfgp/eln038 Google Scholar
  93. Jarjour S, Bai L, Gianoulakis C (2009) Effect of acute ethanol administration on the release of opioid peptides from the midbrain including the ventral tegmental area. Alcohol Clin Exp Res 33:1033–1043. doi:10.1111/j.1530-0277.2009.00924.x PubMedGoogle Scholar
  94. Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48:4705–4745. doi:10.1021/jm040219e PubMedGoogle Scholar
  95. Jiménez-Ruiz C, Berlin I, Hering T (2009) Varenicline: a novel pharmacotherapy for smoking cessation. Drugs 69:1319–1338. doi:10.2165/00003495-200969100-00003 PubMedGoogle Scholar
  96. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380. doi:10.1152/physrev.00019.2008 PubMedGoogle Scholar
  97. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114. doi:10.1038/nrn731 PubMedGoogle Scholar
  98. Kaslin J, Nystedt JM, Ostergård M, Peitsaro N, Panula P (2004) The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J Neurosci 24:2678–2689. doi:10.1523/JNEUROSCI.4908-03.2004 PubMedGoogle Scholar
  99. Kaslin J, Panula P (2001) Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 440:342–377PubMedGoogle Scholar
  100. Kawakami K, Abe G, Asada T, Asakawa K, Fukuda R, Ito A, Lal P, Mouri N, Muto A, Suster ML, Takakubo H, Urasaki A, Wada H, Yoshida M (2010) zTrap: zebrafish gene trap and enhancer trap database. BMC Dev Biol 10:105. doi:10.1186/1471-213X-10-105 PubMedGoogle Scholar
  101. Kily LJM, Cowe YCM, Hussain O, Patel S, McElwaine S, Cotter FE, Brennan CH (2008) Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 211:1623–1634. doi:10.1242/jeb.014399 PubMedGoogle Scholar
  102. Kim YJ, Nam RH, Yoo YM, Lee CJ (2004) Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci Lett 355:29–32PubMedGoogle Scholar
  103. Klee EW, Ebbert JO, Schneider H, Hurt RD, Ekker SC (2011) Zebrafish for the study of the biological effects of nicotine. Nicotine Tob Res. doi:10.1093/ntr/ntr010
  104. Komoike Y, Shimojima K, Liang JS, Fujii H, Maegaki Y, Osawa M, Fujii S, Higashinakagawa T, Yamamoto T (2010) A functional analysis of GABARAP on 17p13.1 by knockdown zebrafish. J Hum Genet 55:155–162. doi:10.1038/jhg.2010.1 PubMedGoogle Scholar
  105. Krystal JH, Petrakis IL, Mason G, Trevisan L, D&apos;Souza DC (2003) N-methyl-d-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol Ther 99:79–94Google Scholar
  106. Krystal JH, Staley J, Mason G, Petrakis IL, Kaufman J, Harris RA, Gelernter J, Lappalainen J (2006) Gamma-aminobutyric acid type A receptors and alcoholism: intoxication, dependence, vulnerability, and treatment. Arch Gen Psychiatry 63:957–968. doi:10.1001/archpsyc.63.9.957 PubMedGoogle Scholar
  107. Kurrasch DM, Nevin LM, Wong JS, Baier H, Ingraham HA (2009) Neuroendocrine transcriptional programs adapt dynamically to the supply and demand for neuropeptides as revealed in NSF mutant zebrafish. Neural Dev 4:22. doi:10.1186/1749-8104-4-22 PubMedGoogle Scholar
  108. Lam CS, Rastegar S, Strähle U (2006) Distribution of cannabinoid receptor 1 in the CNS of zebrafish. Neuroscience 138:83–95. doi:10.1016/j.neuroscience.2005.10.069 PubMedGoogle Scholar
  109. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404 PubMedGoogle Scholar
  110. Lassen N, Estey T, Tanguay RL, Pappa A, Reimers MJ, Vasiliou V (2005) Molecular cloning, baculovirus expression, and tissue distribution of the zebrafish aldehyde dehydrogenase 2. Drug Metabol Dispos Biol Fate Chem 33:649–656. doi:10.1124/dmd.104.002964 Google Scholar
  111. Lau B, Bretaud S, Huang Y, Lin E, Guo S (2006) Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav 5:497–505. doi:10.1111/j.1601-183X.2005.00185.x PubMedGoogle Scholar
  112. Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet J (1998) Psychiatric genetics: search for phenotypes. Trends Neurosci 21:102–105PubMedGoogle Scholar
  113. Leuchter AF, Cook IA, Hunter AM, Korb AS (2009) A new paradigm for the prediction of antidepressant treatment response. Dialogues Clinical Neurosci 11:435–446Google Scholar
  114. Lewohl JM, Wang L, Miles MF, Zhang L, Dodd PR, Harris RA (2000) Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin Exp Res 24:1873–1882PubMedGoogle Scholar
  115. Li MD (2008) Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses. Hum Genet 123:119–131. doi:10.1007/s00439-008-0473-0 PubMedGoogle Scholar
  116. Li MD, Mangold JE, Seneviratne C, Chen GB, Ma JZ, Lou XY, Payne TJ (2009) Association and interaction analyses of GABBR1 and GABBR2 with nicotine dependence in European- and African–American populations. PLoS One 4:e7055PubMedGoogle Scholar
  117. Li P, Shah S, Huang L, Carr AL, Gao Y, Thisse C, Thisse B, Li L (2007) Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn 236:1339–1346. doi:10.1002/dvdy.21130 PubMedGoogle Scholar
  118. Lillesaar C, Stigloher C, Tannhäuser B, Wullimann MF, Bally-Cuif L (2009) Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specific pet1 expression. J Comp Neurol 512:158–182. doi:10.1002/cne.21887 PubMedGoogle Scholar
  119. Lillesaar C, Tannhäuser B, Stigloher C, Kremmer E, Bally-Cuif L (2007) The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system. Dev Dyn 236:1072–1084. doi:10.1002/dvdy.21095 PubMedGoogle Scholar
  120. Linden AM, Schmitt U, Leppa E, Wulff P, Wisden W, Luddens H, Korpi ER (2011) Ro 15–4513 antagonizes alcohol-induced sedation in mice through alphabetagamma2-type GABA(A) receptors. Frontiers Neurosci 5:3. doi:10.3389/fnins.2011.00003 Google Scholar
  121. Loh EW, Tang NL, Lee DT, Liu SI, Stadlin A (2007) Association analysis of GABA receptor subunit genes on 5q33 with heroin dependence in a Chinese male population. Am J Med Genet B Neuropsychiatr Genet 144B:439–443PubMedGoogle Scholar
  122. Lohr H, Ryu S, Driever W (2009) Zebrafish diencephalic A11-related dopaminergic neurons share a conserved transcriptional network with neuroendocrine cell lineages. Development 136:1007–1017. doi:10.1242/dev.033878 PubMedGoogle Scholar
  123. Lotsch J, von Hentig N, Freynhagen R, Griessinger N, Zimmermann M, Doehring A, Rohrbacher M, Sittl R, Geisslinger G (2009) Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genom 19:429–436Google Scholar
  124. Lou XY, Ma JZ, Sun D, Payne TJ, Li MD (2007) Fine mapping of a linkage region on chromosome 17p13 reveals that GABARAP and DLG4 are associated with vulnerability to nicotine dependence in European-Americans. Hum Mol Genet 16:142–153. doi:10.1093/hmg/ddl450 PubMedGoogle Scholar
  125. Luo X, Kranzler HR, Zuo L, Lappalainen J, Yang B-z, Gelernter J (2006) ADH4 gene variation is associated with alcohol dependence and drug dependence in European Americans: results from HWD tests and case-control association studies. Neuropsychopharmacology 31:1085–1095. doi:10.1038/sj.npp.1300925 PubMedGoogle Scholar
  126. Luscher B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70:385–409. doi:10.1016/j.neuron.2011.03.024 PubMedGoogle Scholar
  127. Mahler J, Filippi A, Driever W (2010) DeltaA/DeltaD regulate multiple and temporally distinct phases of notch signaling during dopaminergic neurogenesis in zebrafish. J Neurosci 30:16621–16635. doi:10.1523/JNEUROSCI.4769-10.2010 PubMedGoogle Scholar
  128. Maldonado R, Berrendero F, Ozaita A, Robledo P (2011) Neurochemical basis of cannabis addiction. Neuroscience. doi:10.1016/j.neuroscience.2011.02.035
  129. Manchikanti L (2007) National drug control policy and prescription drug abuse: facts and fallacies. Pain Physician 10:399–424PubMedGoogle Scholar
  130. Manchikanti L, Singh A (2008) Therapeutic opioids: a ten-year perspective on the complexities and complications of the escalating use, abuse, and nonmedical use of opioids. Pain Physician 11:S63–S88PubMedGoogle Scholar
  131. Mansour A, Meador-Woodruff JH, Bunzow JR, Civelli O, Akil H, Watson SJ (1990) Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis. J Neurosci 10:2587–2600PubMedGoogle Scholar
  132. Martínez C, Galván S, Garcia-Martin E, Ramos MI, Gutiérrez-Martín Y, Agúndez JAG (2010) Variability in ethanol biodisposition in whites is modulated by polymorphisms in the ADH1B and ADH1C genes. Hepatology (Baltimore) 51:491–500. doi:10.1002/hep.23341 Google Scholar
  133. Mathur P, Guo S (2010) Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiology Disease 40:66–72. doi:10.1016/j.nbd.2010.05.016 Google Scholar
  134. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564. doi:10.1038/346561a0 PubMedGoogle Scholar
  135. Mayer P, Rochlitz H, Rauch E, Rommelspacher H, Hasse HE, Schmidt S, Hollt V (1997) Association between a delta opioid receptor gene polymorphism and heroin dependence in man. Neuroreport 8:2547–2550PubMedGoogle Scholar
  136. McDearmid JR, Liao M et al (2006) Glycine receptors regulate interneuron differentiation during spinal network development. Proc Nat Acad Sci USA 103(25):9679–9684Google Scholar
  137. McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, Nuñez A, Butrym ED, Richards MP, Wang C-S, Cheng G, Zhao Z, Wang C (2004) Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci USA 101:17593–17598. doi:10.1073/pnas.0407921102 PubMedGoogle Scholar
  138. McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM, Bradshaw HB (2010) N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44. doi:10.1186/1471-2202-11-44 PubMedGoogle Scholar
  139. McLean DL, Fetcho JR (2004a) Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J Comp Neurol 480:38–56. doi:10.1002/cne.20280 PubMedGoogle Scholar
  140. McLean DL, Fetcho JR (2004b) Relationship of tyrosine hydroxylase and serotonin immunoreactivity to sensorimotor circuitry in larval zebrafish. J Comp Neurol 480:57–71. doi:10.1002/cne.20281 PubMedGoogle Scholar
  141. Meera P, Olsen RW, Otis TS, Wallner M (2010) Alcohol- and alcohol antagonist-sensitive human GABAA receptors: tracking delta subunit incorporation into functional receptors. Mol Pharmacol 78:918–924. doi:10.1124/mol.109.062687 PubMedGoogle Scholar
  142. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701. doi:10.1038/nbt1398 PubMedGoogle Scholar
  143. Mittleman MA, Lewis RA et al (2001) Triggering myocardial infarction by marijuana. Circulation 103(23):2805–2809Google Scholar
  144. Mohrlüder J, Schwarten M, Willbold D (2009) Structure and potential function of gamma-aminobutyrate type A receptor-associated protein. FEBS J 276:4989–5005. doi:10.1111/j.1742-4658.2009.07207.x PubMedGoogle Scholar
  145. Mongeon R, Gleason MR et al (2008) Synaptic homeostasis in a zebrafish glial glycine transporter mutant. J Neurophysiol 100(4):1716–1723Google Scholar
  146. Monsma FJ, Mahan LC, McVittie LD, Gerfen CR, Sibley DR (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci USA 87:6723–6727PubMedGoogle Scholar
  147. Moonat S, Starkman BG, Sakharkar A, Pandey SC (2010) Neuroscience of alcoholism: molecular and cellular mechanisms. CMLS 67:73–88. doi:10.1007/s00018-009-0135-y PubMedGoogle Scholar
  148. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65. doi:10.1038/365061a0 PubMedGoogle Scholar
  149. Murakami M (2011) Lipid mediators in life science. Exp Anim Tokyo 60:7–20Google Scholar
  150. Nguyen-Legros J, Versaux-Botteri C, Vernier P (1999) Dopamine receptor localization in the mammalian retina. Mol Neurobiol 19:181–204. doi:10.1007/BF02821713 PubMedGoogle Scholar
  151. Nielsen DA, Barral S, Proudnikov D, Kellogg S, Ho A, Ott J, Kreek MJ (2008) TPH2 and TPH1: association of variants and interactions with heroin addiction. Behav Genet 38:133–150. doi:10.1007/s10519-007-9187-7 PubMedGoogle Scholar
  152. Ninkovic J, Bally-Cuif L (2006) The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39:262–274. doi:10.1016/j.ymeth.2005.12.007 PubMedGoogle Scholar
  153. Nishimura FT, Fukunaga T, Kajiura H, Umeno K, Takakura H, Ono T, Nishijo H (2002) Effects of aldehyde dehydrogenase-2 genotype on cardiovascular and endocrine responses to alcohol in young Japanese subjects. Auton Neurosci Basic Clinical 102:60–70Google Scholar
  154. Norton WHJ, Folchert A, Bally-Cuif L (2008) Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol 511:521–542. doi:10.1002/cne.21831 PubMedGoogle Scholar
  155. Nusslein-Volhard C (2002) Zebrafish—a practical approach, 1st edn. Oxford University Press, OxfordGoogle Scholar
  156. Nutt DJ, King LA, Phillips LD, ISCo Drugs (2010) Drug harms in the UK: a multicriteria decision analysis. Lancet 376:1558–1565. doi:10.1016/S0140-6736(10)61462-6 PubMedGoogle Scholar
  157. O’Dowd BF (1993) Structures of dopamine receptors. J Neurochem 60:804–816Google Scholar
  158. Olsen Y, Daumit GL, Ford DE (2006) Opioid prescriptions by US primary care physicians from 1992 to 2001. J Pain 7:225–235PubMedGoogle Scholar
  159. Onaivi ES (2006) Neuropsychobiological evidence for the functional presence and expression of cannabinoid CB2 receptors in the brain. Neuropsychobiology 54:231–246. doi:10.1159/000100778 PubMedGoogle Scholar
  160. Overton HA, Babbs AJ, Doel SM, Fyfe MCT, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175. doi:10.1016/j.cmet.2006.02.004 PubMedGoogle Scholar
  161. Panula P, Chen Y-C, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40:46–57. doi:10.1016/j.nbd.2010.05.010 PubMedGoogle Scholar
  162. Parsian A, Zhang ZH (1999) Human chromosomes 11p15 and 4p12 and alcohol dependence: possible association with the GABRB1 gene. Am J Med Genet 88:533–538PubMedGoogle Scholar
  163. Paulozzi LJ, Budnitz DS, Xi Y (2006) Increasing deaths from opioid analgesics in the United States. Pharmacoepidemiol Drug Saf 15:618–627PubMedGoogle Scholar
  164. Paulozzi LJ, Ryan GW (2006) Opioid analgesics and rates of fatal drug poisoning in the United States. Am J Prev Med 31:506–511PubMedGoogle Scholar
  165. Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631. doi:10.1124/pr.110.003004 PubMedGoogle Scholar
  166. Petzold AM, Balciunas D, Sivasubbu S, Clark KJ, Bedell VM, Westcot SE, Myers SR, Moulder GL, Thomas MJ, Ekker SC (2009) Nicotine response genetics in the zebrafish. Proc Nat Acad Sci 106:18662–18667. doi:10.1073/pnas.0908247106 PubMedGoogle Scholar
  167. Pfaar H, von Holst A, Vogt Weisenhorn DM, Brodski C, Guimera J, Wurst W (2002) mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Dev Genes Evol 212:43–46. doi:10.1007/s00427-001-0208-x PubMedGoogle Scholar
  168. Piccinetti CC, Migliarini B, Olivotto I, Coletti G, Amici A, Carnevali O (2010) Appetite regulation: the central role of melatonin in Danio rerio. Horm Behav 58:780–785. doi:10.1016/j.yhbeh.2010.07.013 PubMedGoogle Scholar
  169. Pinal-Seoane N, Martin IR, Gonzalez-Nuñez V, de Velasco EMF, Alvarez FA, Sarmiento RG, Rodríguez RE (2006) Characterization of a new duplicate delta-opioid receptor from zebrafish. J Mol Endocrinol 37:391–403. doi:10.1677/jme.1.02136 PubMedGoogle Scholar
  170. Pinard A, Seddik R, Bettler B (2010) GABAB receptors: physiological functions and mechanisms of diversity. Adv Pharmacol (San Diego) 58:231–255. doi:10.1016/S1054-3589(10)58010-4 Google Scholar
  171. Pope HG, Gruber AJ et al (2001) Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry 58(10):909–915Google Scholar
  172. Prober DA, Zimmerman S, Myers BR, McDermott BM, Kim S-H, Caron S, Rihel J, Solnica-Krezel L, Julius D, Hudspeth AJ, Schier AF (2008) Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 28:10102–10110. doi:10.1523/JNEUROSCI.2740-08.2008 PubMedGoogle Scholar
  173. Radel M, Vallejo RL, Iwata N, Aragon R, Long JC, Virkkunen M, Goldman D (2005) Haplotype-based localization of an alcohol dependence gene to the 5q34 {gamma}-aminobutyric acid type A gene cluster. Arch Gen Psychiatry 62:47–55PubMedGoogle Scholar
  174. Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, Damadzic R, Eskay R, Schoor M, Thorsell A, Schwandt ML, Sommer WH, George DT, Parsons LH, Herscovitch P, Hommer D, Heilig M (2011) A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry 16:809–817. doi:10.1038/mp.2010.56 PubMedGoogle Scholar
  175. Rauch G, Lyons D, Middendorf I, Friedlander B, Arana N, Reyes T, Talbot W (2003) Submission and curation of gene expression data. http://www.zfin.org
  176. Ray R, Jepson C, Patterson F, Strasser A, Rukstalis M, Perkins K, Lynch KG, O’Malley S, Berrettini WH, Lerman C (2006) Association of OPRM1 A118G variant with the relative reinforcing value of nicotine. Psychopharmacology (Berl) 188:355–363. doi:10.1007/s00213-006-0504-2 Google Scholar
  177. Reck BH, Mukhopadhyay N, Tsai HJ, Weeks DE (2005) Analysis of alcohol dependence phenotype in the COGA families using covariates to detect linkage. BMC Genet 6:S143PubMedGoogle Scholar
  178. Rehm Room, Monteiro Gmel, Graham Rehn (2004) Comparative quantification of health risks: global and regional burden of disease due to selected major risk factors. WHO, Geneva, pp 959–1108Google Scholar
  179. Reyes-Gibby CC, Shete S, Rakvag T, Bhat SV, Skorpen F, Bruera E, Kaasa S, Klepstad P (2007) Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain 130:25–30. doi:10.1016/j.pain.2006.10.023 PubMedGoogle Scholar
  180. Rink E, Guo S (2004) The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience 127:147–154. doi:10.1016/j.neuroscience.2004.05.004 PubMedGoogle Scholar
  181. Rink E, Wullimann MF (2001) The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889:316–330PubMedGoogle Scholar
  182. Rink E, Wullimann MF (2002a) Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Res Bull 57:385–387PubMedGoogle Scholar
  183. Rink E, Wullimann MF (2002b) Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Dev Brain Res 137:89–100Google Scholar
  184. Rios Y, Melmed S, Lin S, Liu NA (2011) Zebrafish usp39 mutation leads to rb1 mRNA splicing defect and pituitary lineage expansion. PLoS genetics 7:e1001271. doi:10.1371/journal.pgen.1001271 PubMedGoogle Scholar
  185. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582. doi:10.1073/pnas.0502272102 PubMedGoogle Scholar
  186. Rodd ZA, Kimpel MW, Edenberg HJ, Bell RL, Strother WN, McClintick JN, Carr LG, Liang T, McBride WJ (2008) Differential gene expression in the nucleus accumbens with ethanol self-administration in inbred alcohol-preferring rats. Pharmacol Biochem Behav 89:481–498 Epub 2008 Feb 26PubMedGoogle Scholar
  187. Rodriguez-Martin I, Herrero-Turrion MJ, Fdez Marron, de Velasco E, Gonzalez-Sarmiento R, Rodríguez RE (2007) Characterization of two duplicate zebrafish Cb2-like cannabinoid receptors. Gene 389:36–44. doi:10.1016/j.gene.2006.09.016 PubMedGoogle Scholar
  188. Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140:790–801. doi:10.1038/sj.bjp.0705467 PubMedGoogle Scholar
  189. Rucktooa P, Smit AB, Sixma TK (2009) Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol 78:777–787. doi:10.1016/j.bcp.2009.06.098 PubMedGoogle Scholar
  190. Ruuskanen JO, Peitsaro N, Kaslin JVM, Panula P, Scheinin M (2005) Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. J Neurochem 94:1559–1569. doi:10.1111/j.1471-4159.2005.03305.x PubMedGoogle Scholar
  191. Ruuskanen JO, Xhaard H, Marjamäki A, Salaneck E, Salminen T, Yan Y-L, Postlethwait JH, Johnson MS, Larhammar D, Scheinin M (2004) Identification of duplicated fourth alpha2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Mol Biol Evol 21:14–28. doi:10.1093/molbev/msg224 PubMedGoogle Scholar
  192. Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson N-O, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2009) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101. doi:10.1038/sj.bjp.0707460 Google Scholar
  193. Sallinen V, Sundvik M, Reenilä I, Peitsaro N, Khrustalyov D, Anichtchik O, Toleikyte G, Kaslin J, Panula P (2009) Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J Neurochem 109:403–415. doi:10.1111/j.1471-4159.2009.05986.x PubMedGoogle Scholar
  194. Sanchez-Simon FM, Rodríguez RE (2008) Developmental expression and distribution of opioid receptors in zebrafish. Neuroscience 151:129–137. doi:10.1016/j.neuroscience.2007.09.086 PubMedGoogle Scholar
  195. Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE (2010) Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol 78:935–942. doi:10.1124/mol.110.066837 PubMedGoogle Scholar
  196. Sandell JH, Martin SC, Heinrich G (1994) The development of GABA immunoreactivity in the retina of the zebrafish (Brachydanio rerio). J Comp Neurol 345:596–601. doi:10.1002/cne.903450409 PubMedGoogle Scholar
  197. Sander T, Ball D, Murray R, Patel J, Samochowiec J, Winterer G, Rommelspacher H, Schmidt LG, Loh EW (1999) Association analysis of sequence variants of GABA(A) alpha6, beta2, and gamma2 gene cluster and alcohol dependence. Alcohol Clin Exp Res 23:427–431PubMedGoogle Scholar
  198. Sanders-Bush E, Fentress H, Hazelwood L (2003) Serotonin 5-ht2 receptors: molecular and genomic diversity. Mol Interv 3:319–330. doi:10.1124/mi.3.6.319 PubMedGoogle Scholar
  199. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27PubMedGoogle Scholar
  200. Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24. doi:10.1186/1744-9081-6-24 PubMedGoogle Scholar
  201. Scott MM, Krueger KC, Deneris ES (2005) A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development. J Neurosci 25:2628–2636. doi:10.1523/JNEUROSCI.4979-04.2005 PubMedGoogle Scholar
  202. Shippenberg TS, Chefer VI, Zapata A, Heidbreder CA (2001) Modulation of the behavioral and neurochemical effects of psychostimulants by kappa-opioid receptor systems. Ann N Y Acad Sci 937:50–73PubMedGoogle Scholar
  203. Sia AT, Lim Y, Lim EC, Goh RW, Law HY, Landau R, Teo YY, Tan EC (2008) A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 109:520–526. doi:10.1097/ALN.0b013e318182af21 PubMedGoogle Scholar
  204. Sieh W, Basu S, Fu AQ, Rothstein JH, Scheet PA, Stewart WC, Sung YJ, Thompson EA, Wijsman EM (2005) Comparison of marker types and map assumptions using Markov chain Monte Carlo-based linkage analysis of COGA data. BMC Genet 6:S11PubMedGoogle Scholar
  205. Smith TH, Sim-Selley LJ, Selley DE (2010) Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br J Pharmacol 160:454–466. doi:10.1111/j.1476-5381.2010.00777.x PubMedGoogle Scholar
  206. Song J, Koller DL, Foroud T, Carr K, Zhao J, Rice J, Nurnberger JI Jr, Begleiter H, Porjesz B, Smith TL, Schuckit MA, Edenberg HJ (2003) Association of GABA(A) receptors and alcohol dependence and the effects of genetic imprinting. Am J Med Genet B Neuropsychiatr Genet 117B:39–45PubMedGoogle Scholar
  207. Song W, Zou Z, Xu F, Gu X, Xu X, Zhao Q (2006) Molecular cloning and expression of a second zebrafish aldehyde dehydrogenase 2 gene (aldh2b). DNA Seq J DNA Seq mapp 17:262–269Google Scholar
  208. Steinbusch HW (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6:557–618PubMedGoogle Scholar
  209. Steinbusch HW, Nieuwenhuys R (1981) Localization of serotonin-like immunoreactivity in the central nervous system and pituitary of the rat, with special references to the innervation of the hypothalamus. Adv Exp Med Biol 133:7–35PubMedGoogle Scholar
  210. Stewart A, Wong K, Cachat J, Gaikwad S, Kyzar E, Wu N, Hart P, Piet V, Utterback E, Elegante M, Tien D, Kalueff AV (2011) Zebrafish models to study drug abuse-related phenotypes. Rev Neurosci 22:95–105. doi:10.1515/RNS.2011.011 PubMedGoogle Scholar
  211. Substance Abuse and Mental Health Services Administration (2010) Results from the 2009 National Survey on Drug Use and Health: Volume I. Summary of National Findings (Office of Applied Studies, NSDUH Series H-38A, HHS Publication No. SMA 10-4586 Findings). Rockville, MDGoogle Scholar
  212. Sullivan C, Charette J, Catchen J, Lage CR, Giasson G, Postlethwait JH, Millard PJ, Kim CH (2009) The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. J Immunol 183:5896–5908. doi:10.4049/jimmunol.0803285 PubMedGoogle Scholar
  213. Sun Y, Alexander SPH, Garle MJ, Gibson CL, Hewitt K, Murphy SP, Kendall DA, Bennett AJ (2007) Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br J Pharmacol 152:734–743. doi:10.1038/sj.bjp.0707478 PubMedGoogle Scholar
  214. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121 PubMedGoogle Scholar
  215. Tan KR, Rudolph U, Luscher C (2011) Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci 34:188–197 Epub 2011 Feb 25PubMedGoogle Scholar
  216. Tassin J-P (2008) Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse. Biochem Pharmacol 75:85–97. doi:10.1016/j.bcp.2007.06.038 PubMedGoogle Scholar
  217. Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W (2011) Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Commun 2:171. doi:10.1038/ncomms1171 PubMedGoogle Scholar
  218. Thisse B, Pflumino S, Furthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis. http://www.zfin.org
  219. Thisse B, Thisse C (2004) Fast release clones: a high throughput expression analysis. http://www.zfin.org
  220. Thisse C, Thisse B (2005) High throughput expression analysis of ZF-models consortium clones. http://www.zfin.org
  221. Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111:707–714. doi:10.1016/j.pharmthera.2005.12.006 PubMedGoogle Scholar
  222. Törk I (1990) Anatomy of the serotonergic system. Ann N Y Acad Sci 600:9–34 discussion 34–5PubMedGoogle Scholar
  223. Tsai G, Coyle JT (1998) The role of glutamatergic neurotransmission in the pathophysiology of alcoholism. Annu Rev Med 49:173–184. doi:10.1146/annurev.med.49.1.173 PubMedGoogle Scholar
  224. Tyacke RJ, Lingford-Hughes A, Reed LJ, Nutt DJ (2010) GABAB receptors in addiction and its treatment. Adv Pharmacol 58:373–396PubMedGoogle Scholar
  225. Ueda N, Tsuboi K, Uyama T (2010) Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim Biophys Acta 1801:1274–1285. doi:10.1016/j.bbalip.2010.08.010 PubMedGoogle Scholar
  226. Ueda N, Tsuboi K, Uyama T, Ohnishi T (2011) Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol. Biofactors 37:1–7. doi:10.1002/biof.131 PubMedGoogle Scholar
  227. Veenstra-VanderWeele J, Anderson GM, Cook EH (2000) Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol 410:165–181PubMedGoogle Scholar
  228. Vlachou S, Markou A (2010) GABAB receptors in reward processes. Adv Pharmacol (San Diego) 58:315–371. doi:10.1016/S1054-3589(10)58013-X Google Scholar
  229. Volkmann K, Rieger S, Babaryka A, Koster RW (2008) The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Dev Biol 313:167–180. doi:10.1016/j.ydbio.2007.10.024 PubMedGoogle Scholar
  230. Volkow ND, Fowler JS, Wang G-J, Swanson JM, Telang F (2007) Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol 64:1575–1579. doi:10.1001/archneur.64.11.1575 PubMedGoogle Scholar
  231. Wagner FA, Anthony JC (2002) From first drug use to drug dependence; developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology 26:479–488. doi:10.1016/S0893-133X(01)00367-0 PubMedGoogle Scholar
  232. Walstab J, Rappold G, Niesler B (2010) 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther 128:146–169. doi:10.1016/j.pharmthera.2010.07.001 PubMedGoogle Scholar
  233. Walter C, Lotsch J (2009) Meta-analysis of the relevance of the OPRM1 118A > G genetic variant for pain treatment. Pain 146:270–275. doi:10.1016/j.pain.2009.07.013 PubMedGoogle Scholar
  234. Wang Z, Nishimura Y, Shimada Y, Umemoto N, Hirano M, Zang L, Oka T, Sakamoto C, Kuroyanagi J, Tanaka T (2009) Zebrafish beta-adrenergic receptor mRNA expression and control of pigmentation. Gene 446:18–27. doi:10.1016/j.gene.2009.06.005 PubMedGoogle Scholar
  235. Watson S, Chambers D, Hobbs C, Doherty P, Graham A (2008) The endocannabinoid receptor, CB1, is required for normal axonal growth and fasciculation. Mol Cell Neurosci 38:89–97. doi:10.1016/j.mcn.2008.02.001 PubMedGoogle Scholar
  236. Welsh L, Tanguay RL, Svoboda KR (2009) Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish. Toxicol Appl Pharmacol 237:29–40. doi:10.1016/j.taap.2008.06.025 PubMedGoogle Scholar
  237. WHO WHO (2008) WHO Report on the global tobacco epideminc. WHO Press, GenevaGoogle Scholar
  238. Wick MJ, Mihic SJ, Ueno S, Mascia MP, Trudell JR, Brozowski SJ, Ye Q, Harrison NL, Harris RA (1998) Mutations of gamma-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc Natl Acad Sci USA 95:6504–6509PubMedGoogle Scholar
  239. Woolfit M, Wolfe K (2005) The gene duplication that greased society&apos;s wheels. Nat Genet 37:566–567. doi:10.1038/ng0605-566 PubMedGoogle Scholar
  240. Wysowski DK (2007) Surveillance of prescription drug-related mortality using death certificate data. Drug Saf 30:533–540PubMedGoogle Scholar
  241. Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL (2011) Brain cannabinoid CB receptors modulate cocaine’s actions in mice. Nat Neurosci 14:1160–1166. doi:10.1038/nn.2874 PubMedGoogle Scholar
  242. Xu K, Liu XH, Nagarajan S, Gu XY, Goldman D (2002) Relationship of the delta-opioid receptor gene to heroin abuse in a large Chinese case/control sample. Am J Med Genet 110:45–50. doi:10.1002/ajmg.10374 PubMedGoogle Scholar
  243. Xuei X, Dick D, Flury-Wetherill L, Tian HJ, Agrawal A, Bierut L, Goate A, Bucholz K, Schuckit M, Nurnberger J Jr, Tischfield J, Kuperman S, Porjesz B, Begleiter H, Foroud T, Edenberg HJ (2006) Association of the kappa-opioid system with alcohol dependence. Mol Psychiatry 11:1016–1024. doi:10.1038/sj.mp.4001882 PubMedGoogle Scholar
  244. Yoshimura M, Pearson S, Kadota Y, Gonzalez CE (2006) Identification of ethanol responsive domains of adenylyl cyclase. Alcohol Clin Exp Res 30:1824–1832. doi:10.1111/j.1530-0277.2006.00219.x PubMedGoogle Scholar
  245. Yoshimura M, Tabakoff B (1995) Selective effects of ethanol on the generation of cAMP by particular members of the adenylyl cyclase family. Alcohol Clin Exp Res 19:1435–1440PubMedGoogle Scholar
  246. Yuferov V, Fussell D, LaForge KS, Nielsen DA, Gordon D, Ho A, Leal SM, Ott J, Kreek MJ (2004) Redefinition of the human kappa opioid receptor gene (OPRK1) structure and association of haplotypes with opiate addiction. Pharmacogenetics 14:793–804 pii: 00008571-200412000-00002PubMedGoogle Scholar
  247. Zhang H, Kranzler HR, Yang BZ, Luo X, Gelernter J (2008) The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry 13:531–543. doi:10.1038/sj.mp.4002035 PubMedGoogle Scholar
  248. Zhang H, Zhong X, Ye Y (2005) Multivariate linkage analysis using the electrophysiological phenotypes in the COGA alcoholism data. BMC Genet 6:S118PubMedGoogle Scholar
  249. Zirger JM, Beattie CE, McKay DB, Boyd RT (2003) Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Exp Patterns 3:747–754Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Eric W. Klee
    • 1
  • Henning Schneider
    • 2
  • Karl J. Clark
    • 1
  • Margot A. Cousin
    • 1
  • Jon O. Ebbert
    • 1
  • W. Michael Hooten
    • 1
  • Victor M. Karpyak
    • 1
  • David O. Warner
    • 1
  • Stephen C. Ekker
    • 1
  1. 1.Mayo ClinicMayo Addiction Research CenterRochesterUSA
  2. 2.Department of BiologyDePauw UniversityGreencastleUSA

Personalised recommendations