Human Genetics

, Volume 131, Issue 7, pp 1047–1056 | Cite as

Association of PDE4B polymorphisms and schizophrenia in Northwestern Han Chinese

  • Fanglin Guan
  • Chen Zhang
  • Shuguang Wei
  • Hongbo Zhang
  • Xiaomin Gong
  • Jiali Feng
  • Chengge Gao
  • Rong Su
  • Huanming Yang
  • Shengbin LiEmail author
Original Investigation


The phosphodiesterase 4B (PDE4B) is a candidate susceptibility gene for schizophrenia (SCZ), interacting with DISC1, a known genetic risk factor for SCZ. To examine if variants within PDE4B gene are associated with SCZ in Northwestern Han Chinese, and if these effects vary in gender-specific subgroup, we analyzed 20 SNPs, selected from previous studies and preliminary HapMap data analyses with minor allele frequency (MAF) ≥20%, in a cohort of 428 cases and 572 controls from genetically independent Northwestern Han Chinese. Single SNP association, haplotype association and sex-specific association analysis were performed. We found that rs472952 is significantly associated with SCZ and rs7537440 is associated with SCZ in females. Further analysis indicated that a haplotype block spanning PDE4B2 splice site is highly associated with SCZ and several haplotypes in this block have about twofold to threefold increase in cases. Our results provide further evidence that PDE4B may play important roles in the etiology of SCZ.


Haplotype Block Risk Haplotype Haplotype Association Analysis PDE4B Gene Extra Cellular Signal Regulate Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank all of the donors for their assistance in accessing collections and their advice and comments during the preparation of this paper.

Supplementary material

439_2011_1120_MOESM1_ESM.doc (310 kb)
Supplementary material 1 (DOC 310 kb)


  1. Abraham IM, Herbison AE (2005) Major sex differences in non-genomic estrogen actions on intracellular signaling in mouse brain in vivo. Neuroscience 131(4):945–951. doi: 10.1016/j.neuroscience.2004.10.046 PubMedCrossRefGoogle Scholar
  2. Andreasen NC (1995) Symptoms, signs, and diagnosis of schizophrenia. Lancet 346(8973):477–481PubMedCrossRefGoogle Scholar
  3. Auger AP (2003) Sex differences in the developing brain: crossroads in the phosphorylation of cAMP response element binding protein. J Neuroendocrinol 15(6):622–627PubMedCrossRefGoogle Scholar
  4. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. doi: 10.1093/bioinformatics/bth457 PubMedCrossRefGoogle Scholar
  5. Bradshaw NJ, Porteous DJ (2010) DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology. doi: 10.1016/j.neuropharm.2010.12.027
  6. Chen J, Zheng H, Bei JX, Sun L, Jia WH, Li T, Zhang F, Seielstad M, Zeng YX, Zhang X, Liu J (2009) Genetic structure of the Han Chinese population revealed by genome-wide SNP variation. Am J Hum Genet 85(6):775–785. doi: 10.1016/j.ajhg.2009.10.016 Google Scholar
  7. Chen P, Chen J, Huang K, Ji W, Wang T, Li T, Wang Y, Wang H, Feng G, He L, Shi Y (2011) Analysis of association between common SNPs in ErbB4 and bipolar affective disorder, major depressive disorder and schizophrenia in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. doi: 10.1016/j.pnpbp.2011.09.011
  8. Cheung YF, Kan Z, Garrett-Engele P, Gall I, Murdoch H, Baillie GS, Camargo LM, Johnson JM, Houslay MD, Castle JC (2007) PDE4B5, a novel, super-short, brain-specific cAMP phosphodiesterase-4 variant whose isoform-specifying N-terminal region is identical to that of cAMP phosphodiesterase-4D6 (PDE4D6). J Pharmacol Exp Ther 322(2):600–609. doi: 10.1124/jpet.107.122218 PubMedCrossRefGoogle Scholar
  9. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK (2008) The DISC locus in psychiatric illness. Mol Psychiatr 13(1):36–64. doi: 10.1038/ CrossRefGoogle Scholar
  10. Craddock N, O’Donovan MC, Owen MJ (2005) The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 42(3):193–204. doi: 10.1136/jmg.2005.030718 PubMedCrossRefGoogle Scholar
  11. Curtis D, Xu K (2007) Minor differences in haplotype frequency estimates can produce very large differences in heterogeneity test statistics. BMC Genet 8:38. doi: 10.1186/1471-2156-8-38
  12. Curtis D, Knight J, Sham PC (2006) Program report: GENECOUNTING support programs. Ann Hum Genet 70:277–279. doi: 10.1111/j.1469-1809.2005.00225.x PubMedCrossRefGoogle Scholar
  13. Davis RL, Cherry J, Dauwalder B, Han PL, Skoulakis E (1995) The cyclic AMP system and Drosophila learning. Mol Cell Biochem 149–150:271–278PubMedCrossRefGoogle Scholar
  14. De Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37(11):1217–1223. doi: 10.1038/ng1669 PubMedCrossRefGoogle Scholar
  15. Fatemi SH, King DP, Reutiman TJ, Folsom TD, Laurence JA, Lee S, Fan YT, Paciga SA, Conti M, Menniti FS (2008) PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia. Schizophr Res 101(1–3):36–49. doi: 10.1016/j.schres.2008.01.029 PubMedCrossRefGoogle Scholar
  16. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. doi: 10.1126/science.1069424 PubMedCrossRefGoogle Scholar
  17. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68; image 45. doi: 10.1038/ Google Scholar
  18. Hennah W, Thomson P, Peltonen L, Porteous D (2006) Genes and schizophrenia: beyond schizophrenia: the role of DISC1 in major mental illness. Schizophr Bull 32(3):409–416. doi: 10.1093/schbul/sbj079 PubMedCrossRefGoogle Scholar
  19. Holliday EG, Nyholt DR, Tirupati S, John S, Ramachandran P, Ramamurti M, Ramadoss AJ, Jeyagurunathan A, Kottiswaran S, Smith HJ, Filippich C, Nertney DA, Nancarrow DJ, Hayward NK, Watkins WS, Jorde LB, Thara R, Mowry BJ (2009) Strong Evidence for a Novel Schizophrenia Risk Locus on Chromosome 1p31.1 in Homogeneous Pedigrees From Tamil Nadu, India. Am J Psychiat 166(2):206–215. doi: 10.1176/appi.ajp.2008.08030442 PubMedCrossRefGoogle Scholar
  20. Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 370:1–18PubMedCrossRefGoogle Scholar
  21. Houslay MD, Schafer P, Zhang KY (2005) Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10(22):1503–1519. doi: 10.1016/S1359-6446(05)03622-6 PubMedCrossRefGoogle Scholar
  22. Ishizuka K, Paek M, Kamiya A, Sawa A (2006) A review of Disrupted-In-Schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions. Biol Psychiatry 59(12):1189–1197. doi: 10.1016/j.biopsych.2006.03.065 PubMedCrossRefGoogle Scholar
  23. Kahler AK, Otnaess MK, Wirgenes KV, Hansen T, Jonsson EG, Agartz I, Hall H, Werge T, Morken G, Mors O, Mellerup E, Dam H, Koefod P, Melle I, Steen VM, Andreassen OA, Djurovic S (2009) Association study of PDE4B gene variants in Scandinavian schizophrenia and bipolar disorder multicenter case-control samples. Am J Med Genet B Neuropsychiatr Genet 153B(1):86–96. doi: 10.1002/ajmg.b.30958 Google Scholar
  24. Ke XY, Cardon LR (2003) Efficient selective screening of haplotype tag SNPs. Bioinformatics 19(2):287–288PubMedCrossRefGoogle Scholar
  25. Kelly MP, Isiegas C, Cheung YF, Tokarczyk J, Yang X, Esposito MF, Rapoport DA, Fabian SA, Siegel SJ, Wand G, Houslay MD, Kanes SJ, Abel T (2007) Constitutive activation of Galphas within forebrain neurons causes deficits in sensorimotor gating because of PKA-dependent decreases in cAMP. Neuropsychopharmacol 32(3):577–588. doi: 10.1038/sj.npp.1301099 CrossRefGoogle Scholar
  26. King DP, Paciga SA, Fan Y, Menniti FS (2006) Positive genetic association of phosphodiesterase 4B (PDE4B) with schizophrenia: analysis in two case-control populations. neuroscience meeting planner, vol Program no. 94.20. Society for Neuroscience, AtlantaGoogle Scholar
  27. Lai J, Zhu Y, Huo Z, Sun R, Yu B, Wang Y, Chai Z, Li S (2010) Association study of polymorphisms in the promoter region of DRD4 with schizophrenia, depression, and heroin addiction. Brain Res 1359:227–232PubMedCrossRefGoogle Scholar
  28. Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28(4):215–220. doi: 10.1016/S0968-0004(03)00052-5 PubMedCrossRefGoogle Scholar
  29. Ma J, Qin W, Wang XY, Guo TW, Bian L, Duan SW, Li XW, Zou FG, Fang YR, Fang JX, Feng GY, Gu NF, St Clair D, He L (2006) Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations. Mol Psychiatry 11(5):479–487PubMedCrossRefGoogle Scholar
  30. Menashe I, Rosenberg PS, Chen BE (2008) PGA: power calculator for case-control genetic association analyses. BMC Genet 9:36. doi: 10.1186/1471-2156-9-36
  31. Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thomson PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DHR, Muir WJ, Porteous DJ (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310(5751):1187–1191. doi: 10.1126/science.1112915 PubMedCrossRefGoogle Scholar
  32. Mueser KT, McGurk SR (2004) Schizophrenia. Lancet 363(9426):2063–2072PubMedCrossRefGoogle Scholar
  33. Muly C (2002) Signal transduction abnormalities in schizophrenia: the cAMP system. Psychopharmacol Bull 36(4):92–105PubMedGoogle Scholar
  34. Murdoch H, Mackie S, Collins DM, Hill EV, Bolger GB, Klussmann E, Porteous DJ, Millar JK, Houslay MD (2007) Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci 27(35):9513–9524. doi: 10.1523/JNEUROSCI.1493-07.2007 PubMedCrossRefGoogle Scholar
  35. Nielsen DM, Ehm MG, Weir BS (1998) Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am J Hum Genet 63(5):1531–1540PubMedCrossRefGoogle Scholar
  36. Numata S, Ueno SI, Iga JI, Hongwei S, Nakataki M, Tayoshi S, Sumitani S, Tomotake M, Itakura M, Sano A, Ohmori T (2008) Positive association of the PDE4B (phosphodiesterase 4B) gene with schizophrenia in the Japanese population. J Psychiatr Res 43(1):7–12. doi: 10.1016/j.jpsychires.2008.01.013 PubMedCrossRefGoogle Scholar
  37. Patsopoulos NA, Tatsioni A, Ioannidis JPA (2007) Claims of sex differences—an empirical assessment in genetic associations. JAMA 298(8):880–893PubMedCrossRefGoogle Scholar
  38. Pickard BS, Thomson PA, Christoforou A, Evans KL, Morris SW, Porteous DJ, Blackwood DHR, Muir WJ (2007) The PDE4B gene confers sex-specific protection against schizophrenia. Psychiatr Genet 17(3):129–133PubMedCrossRefGoogle Scholar
  39. Rastogi A, Zai C, Likhodi O, Kennedy JL, Wong AH (2009) Genetic association and post-mortem brain mRNA analysis of DISC1 and related genes in schizophrenia. Schizophr Res 114(1–3):39–49. doi: 10.1016/j.schres.2009.06.019 PubMedCrossRefGoogle Scholar
  40. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, Scolnick E, Cichon S, St. Clair D, Corvin A, Gurling H, Werge T, Rujescu D, Blackwood DH, Pato CN, Malhotra AK, Purcell S, Dudbridge F, Neale BM, Rossin L, Visscher PM, Posthuma D, Ruderfer DM, Fanous A, Stefansson H, Steinberg S, Mowry BJ, Golimbet V, De Hert M, Jönsson EG, Bitter I, Pietiläinen OP, Collier DA, Tosato S, Agartz I, Albus M, Alexander M, Amdur RL, Amin F, Bass N, Bergen SE, Black DW, Børglum AD, Brown MA, Bruggeman R, Buccola NG, Byerley WF, Cahn W, Cantor RM, Carr VJ, Catts SV, Choudhury K, Cloninger CR, Cormican P, Craddock N, Danoy PA, Datta S, de Haan L, Demontis D, Dikeos D, Djurovic S, Donnelly P, Donohoe G, Duong L, Dwyer S, Fink-Jensen A, Freedman R, Freimer NB, Friedl M, Georgieva L, Giegling I, Gill M, Glenthøj B, Godard S, Hamshere M, Hansen M, Hansen T, Hartmann AM, Henskens FA, Hougaard DM, Hultman CM, Ingason A, Jablensky AV, Jakobsen KD, Jay M, Jürgens G, Kahn RS, Keller MC, Kenis G, Kenny E, Kim Y, Kirov GK, Konnerth H, Konte B, Krabbendam L, Krasucki R, Lasseter VK, Laurent C, Lawrence J, Lencz T, Lerer FB, Liang KY, Lichtenstein P, Lieberman JA, Linszen DH, Lönnqvist J, Loughland CM, Maclean AW, Maher BS, Maier W, Mallet J, Malloy P, Mattheisen M, Mattingsdal M, McGhee KA, McGrath JJ, McIntosh A, McLean DE, McQuillin A, Melle I, Michie PT, Milanova V, Morris DW, Mors O, Mortensen PB, Moskvina V, Muglia P, Myin-Germeys I, Nertney DA, Nestadt G, Nielsen J, Nikolov I, Nordentoft M, Norton N, Nöthen MM, O’Dushlaine CT, Olincy A, Olsen L, O’Neill FA, Orntoft TF, Owen MJ, Pantelis C, Papadimitriou G, Pato MT, Peltonen L, Petursson H, Pickard B, Pimm J, Pulver AE, Puri V, Quested D, Quinn EM, Rasmussen HB, Réthelyi JM, Ribble R, Rietschel M, Riley BP, Ruggeri M, Schall U, Schulze TG, Schwab SG, Scott RJ, Shi J, Sigurdsson E, Silverman JM, Spencer CC, Stefansson K, Strange A, Strengman E, Stroup TS, Suvisaari J, Terenius L, Thirumalai S, Thygesen JH, Timm S, Toncheva D, van den Oord E, van Os J, van Winkel R, Veldink J, Walsh D, Wang AG, Wiersma D, Wildenauer DB, Williams HJ, Williams NM, Wormley B, Zammit S, Sullivan PF, O’Donovan MC, Daly MJ, Gejman PV; Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–976. doi: 10.1038/ng.940
  41. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52(1):139–153. doi: 10.1016/j.neuron.2006.09.015 PubMedCrossRefGoogle Scholar
  42. Rousset F, Raymond M (1995) Testing heterozygote excess and deficiency. Genetics 140(4):1413–1419PubMedGoogle Scholar
  43. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70(2):425–434PubMedCrossRefGoogle Scholar
  44. Sham PC, Curtis D (1995) Monte-Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 59:97–105PubMedCrossRefGoogle Scholar
  45. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L, Schiffer R, Kotler M, Strous RD, Swartz-Vanetik M, Knobler HY, Shinar E, Beckmann JS, Yakir B, Risch N, Zak NB, Darvasi A (2002) A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71(6):1296–1302PubMedCrossRefGoogle Scholar
  46. Tomppo L, Hennah W, Lahermo P, Loukola A, Tuulio-Henriksson A, Suvisaari J, Partonen T, Ekelund J, Lonnqvist J, Peltonen L (2009) Association between genes of Disrupted in Schizophrenia 1 (DISC1) interactors and schizophrenia supports the role of the DISC1 pathway in the etiology of major mental illnesses. Biol Psychiat 65(12):1055–1062. doi: 10.1016/j.biopsych.2009.01.014 PubMedCrossRefGoogle Scholar
  47. Wei Y, Li C, Li S, Liu Y, Hu L (2011) Association study of monoamine oxidase A/B genes and schizophrenia in Han Chinese. Behav Brain Funct 7:42. doi: 10.1186/1744-9081-7-42 PubMedCrossRefGoogle Scholar
  48. Xu S, Yin X, Li S, Jin W, Lou H, Yang L, Gong X, Wang H, Shen Y, Pan X, He Y, Yang Y, Wang Y, Fu W, An Y, Wang J, Tan J, Qian J, Chen X, Zhang X, Sun Y, Zhang X, Wu B, Jin L (2009) Genomic dissection of population substructure of Han Chinese and its implication in association studies. Am J Hum Genet 85(6):762–774. doi: 10.1016/j.ajhg.2009.10.015
  49. Zhang R, Lu SM, Qiu C, Liu XG, Gao CG, Guo TW, Valenzuela RK, Deng HW, Ma J (2011) Population-based and family-based association studies of ZNF804A locus and schizophrenia. Mol Psychiatry 16(4):360–361PubMedCrossRefGoogle Scholar
  50. Zhao JH, Sham PC (2003) Generic number systems and haplotype analysis. Comput Methods Prog Biomed 70:1–9CrossRefGoogle Scholar
  51. Zhao JH, Curtis D, Sham PC (2000) Model-free analysis and permutation tests for allelic associations. Hum Hered 50(2):133–139PubMedCrossRefGoogle Scholar
  52. Zhao JH, Lissarrague S, Essioux L, Sham PC (2002) GENECOUNTING: haplotype analysis with missing genotypes. Bioinformatics 18(12):1694–1695PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fanglin Guan
    • 1
  • Chen Zhang
    • 2
  • Shuguang Wei
    • 3
  • Hongbo Zhang
    • 1
  • Xiaomin Gong
    • 3
  • Jiali Feng
    • 1
  • Chengge Gao
    • 4
  • Rong Su
    • 3
  • Huanming Yang
    • 5
  • Shengbin Li
    • 6
    Email author
  1. 1.Key Laboratory of Environment and Genes Related to DiseasesMinistry of EducationXi’anChina
  2. 2.The First Department of Orthopedics, The Second Affiliated Hospital, College of MedicineXi’an Jiaotong UniversityXi’anChina
  3. 3.Key Laboratory of National Ministry of Health for Forensic Sciences, College of MedicineXi’an Jiaotong UniversityXi’anChina
  4. 4.Department of Psychiatry, The First Affiliated Hospital, College of MedicineXi’an Jiaotong UniversityXi’anChina
  5. 5.Beijing Genomics InstituteShenzhenChina
  6. 6.Institute of Human Genomics and Forensic SciencesXi’anChina

Personalised recommendations