Skip to main content

Advertisement

Log in

A dynamic model for genome-wide association studies

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Although genome-wide association studies (GWAS) are widely used to identify the genetic and environmental etiology of a trait, several key issues related to their statistical power and biological relevance have remained unexplored. Here, we describe a novel statistical approach, called functional GWAS or fGWAS, to analyze the genetic control of traits by integrating biological principles of trait formation into the GWAS framework through mathematical and statistical bridges. fGWAS can address many fundamental questions, such as the patterns of genetic control over development, the duration of genetic effects, as well as what causes developmental trajectories to change or stop changing. In statistics, fGWAS displays increased power for gene detection by capitalizing on cumulative phenotypic variation in a longitudinal trait over time and increased robustness for manipulating sparse longitudinal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  PubMed  CAS  Google Scholar 

  • Anholt RRH, Mackay TFC (2004) Genetic analysis of complex behaviors in Drosophila. Nat Rev Genet 5:838–849

    Article  PubMed  CAS  Google Scholar 

  • Atchley WR, Zhu J (1997) Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics 147:765–776

    PubMed  CAS  Google Scholar 

  • Bock RD, Thissen D (1976) Fitting multi-component models for growth in stature. In: Proceedings of the 9th international biometrics conference, vol 1, pp 431–442

  • Bogardus C (2009) Missing heritability and GWAS utility. Obesity 17:209–210

    Article  PubMed  Google Scholar 

  • Cui Y, Zhu J, Wu RL (2006) Functional mapping for genetic control of programmed cell death. Physiol Genomics 25:458–469

    Article  PubMed  CAS  Google Scholar 

  • Dawber TR, Meadors GF, Moore FE Jr (1951) Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health 41:279–286

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Wu Y (2008) Semiparametric estimation of covariance matrixes for longitudinal data. J Am Stat Assoc 103:1520–1533

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Huang T, Li R (2007) Analysis of longitudinal data with semiparametric estimation of covariance function. J Am Stat Assoc 102:632–641

    Article  PubMed  CAS  Google Scholar 

  • Fox CS, Heard-Costa N, Cupples LA, Dupuis J, Vasan RS et al (2007) Genome-wide association to body mass index and waist circumference: the Framingham Heart Study 100K project. BMC Med Genet 8(Suppl 1):S18

    Article  PubMed  Google Scholar 

  • Frayling TM (2007) Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet 8:657–662

    Article  PubMed  CAS  Google Scholar 

  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    Article  PubMed  CAS  Google Scholar 

  • Guiot C, Degiorgis PG, Delsanto PP, Gabriele P, Deisboeck TS (2003) Does tumor growth follow a ‘‘universal law’’? J Theor Biol 225:147–151

    Article  PubMed  Google Scholar 

  • Guiot C, Delsanto PP, Carpinteri A, Pugno N, Mansury Y, Deisboeck TS (2006) The dynamic evolution of the power exponent in a universal growth model of tumors. J Theor Biol 240:459–463

    Article  PubMed  Google Scholar 

  • He QL, Berg A, Li Y, Vallejos CE, Wu RL (2010) Modeling genes for plant structure, development and evolution: functional mapping meets plant ontology. Trends Genet 26:39–46

    Article  PubMed  CAS  Google Scholar 

  • Hirschhorn JN (2009) Genomewide association studies—illuminating biologic pathways. New Engl J Med 360:1699–1701

    Article  PubMed  CAS  Google Scholar 

  • Hirschhorn JN, Lettre G (2009) Progress in genome-wide association studies of human height. Horm Res 71:5–13

    Article  PubMed  CAS  Google Scholar 

  • Huskova M, Sen PK (1985) On sequentially adaptive asymptotically efficient rank statistics. Seq Anal 4:125–151

    Article  Google Scholar 

  • Ikram MA, Seshadri S, Bis JC, Fornage M, DeStefano AL et al (2009) Genomewide association studies of stroke. New Engl J Med 360:1718–1728

    Article  PubMed  CAS  Google Scholar 

  • Jaquish C (2007) The Framingham Heart Study, on its way to becoming the gold standard for cardiovascular genetic epidemiology? BMC Med Genet 8:63

    Article  PubMed  Google Scholar 

  • Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97:639–666

    PubMed  CAS  Google Scholar 

  • Keightley PD, Kacser H (1987) Dominance, pleiotropy and metabolic structure. Genetics 117:319–329

    PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Hill W, Thompson R (1994a) Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle. Genet Res 64:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Lofsvold D, Bulmer M (1994b) Analysis of the inheritance, selection and evolution of growth trajectories. Genetics 124:979–993

    Google Scholar 

  • Lettre G, Rioux JD (2008) Autoimmune diseases: insights from genome-wide association studies. Hum Mol Genet 17:R116–R121

    Article  PubMed  CAS  Google Scholar 

  • Li N, McMurry T, Berg A, Wang Z, Berceli SA, Wu RL (2001) Functional clustering of periodic transcriptional profiles through ARMA(p,q). PLoS One 5(4):e9894

    Article  Google Scholar 

  • Lin M, Wu RL (2006) A joint model for nonparametric functional mapping of longitudinal trajectories and time-to-events. BMC Bioinformatics 7(1):138

    Article  PubMed  Google Scholar 

  • Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH et al (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40:768–775

    Article  PubMed  CAS  Google Scholar 

  • Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884

    Article  PubMed  CAS  Google Scholar 

  • Ma CX, Casella G, Wu RL (2002) Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161:1751–1762

    PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  PubMed  CAS  Google Scholar 

  • McCarroll SA, Kuruvilla FG, Korn JM et al (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 40:1166–1174

    Article  PubMed  CAS  Google Scholar 

  • Mckay MD (1997) Non-parametric variance based methods for assessing uncertainty importance. Reliab Eng Syst Saf 57:267–279

    Article  Google Scholar 

  • Meyer K (2000) Random regressions to model phenotypic variation in monthly weights of Australian beef cows. Livest Prod Sci 65:19–38

    Article  Google Scholar 

  • Mohlke KL, Boehnke M, Abecasis GR (2008) Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants. Hum Mol Genet 17:R102–R108

    Article  PubMed  CAS  Google Scholar 

  • Pletcher SD, Geyer CJ (1999) The genetic analysis of age-dependent traits: modeling the character process. Genetics 151:825–835

    Google Scholar 

  • Psychiatric GCCC (2009) Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry 166:540–556

    Article  Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Scuteri A, Sanna S, Chen WM, Uda M, Albai G et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3(7):e115

    Article  PubMed  Google Scholar 

  • Shete S, Hosking FJ, Robertson LB et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41:899–904

    Article  PubMed  CAS  Google Scholar 

  • Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB et al (2009) New sequence variants associated with bone mineral density. Nat Genet 41:15–17

    Article  PubMed  CAS  Google Scholar 

  • Thompson P, Thompson PJL (2009) Introduction to coaching theory. Meyer & Meyer Sport, UK

    Google Scholar 

  • Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42:504–507

    Article  PubMed  CAS  Google Scholar 

  • von Bertalanffy L (1957) Quantitative laws for metabolism and growth. Q Rev Biol 32:217–231

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631

    Article  PubMed  CAS  Google Scholar 

  • Wu RL, Lin M (2006) Functional mapping—how to study the genetic architecture of dynamic complex traits. Nat Rev Genet 7:229–237

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Wu RL, Casella G (2009) Nonparametric functional mapping of quantitative trait loci. Biometrics 65:30–39

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Chen YQ, Casella G, Cheverud JM, Wu R (2005) A non-stationary model for functional mapping of complex traits. Bioinformatics 21:2469–2477

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman D, Núñez-Antón V (2001) Parametric modelling of growth curve data: an overview (with discussions). Test 10:1–73

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by grant DMS/NIGMS-0540745 to RW and NIDA, NIH grants R21 DA024260 and R21 DA024266 to RL. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDA or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongling Wu.

Additional information

K. Das and J. Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 403 kb)

Supplementary material 2 (XLSX 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, K., Li, J., Wang, Z. et al. A dynamic model for genome-wide association studies. Hum Genet 129, 629–639 (2011). https://doi.org/10.1007/s00439-011-0960-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-0960-6

Keywords

Navigation