Human Genetics

, Volume 129, Issue 5, pp 563–571 | Cite as

Genetic analysis of biological pathway data through genomic randomization

  • Brian L. Yaspan
  • William S. Bush
  • Eric S. Torstenson
  • Deqiong Ma
  • Margaret A. Pericak-Vance
  • Marylyn D. Ritchie
  • James S. Sutcliffe
  • Jonathan L. Haines
Original Investigation

Abstract

Genome Wide Association Studies (GWAS) are a standard approach for large-scale common variation characterization and for identification of single loci predisposing to disease. However, due to issues of moderate sample sizes and particularly multiple testing correction, many variants of smaller effect size are not detected within a single allele analysis framework. Thus, small main effects and potential epistatic effects are not consistently observed in GWAS using standard analytical approaches that consider only single SNP alleles. Here, we propose unique methodology that aggregates variants of interest (for example, genes in a biological pathway) using GWAS results. Multiple testing and type I error concerns are minimized using empirical genomic randomization to estimate significance. Randomization corrects for common pathway-based analysis biases, such as SNP coverage and density, linkage disequilibrium, gene size and pathway size. Pathway Analysis by Randomization Incorporating Structure (PARIS) applies this randomization and in doing so directly accounts for linkage disequilibrium effects. PARIS is independent of association analysis method and is thus applicable to GWAS datasets of all study designs. Using the KEGG database as an example, we apply PARIS to the publicly available Autism Genetic Resource Exchange GWAS dataset, revealing pathways with a significant enrichment of positive association results.

Supplementary material

439_2011_956_MOESM1_ESM.xls (558 kb)
Supplementary tables (XLX 558 kb)

References

  1. Askland K, Read C, Moore J (2009) Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission. Hum Genet 125:63–79PubMedCrossRefGoogle Scholar
  2. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  3. Blatt GJ (2005) GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol 71:167–178PubMedCrossRefGoogle Scholar
  4. Delahanty RJ, Kang JQ, Brune CW, Kistner EO, Courchesne E, Cox NJ, Cook EH, Jr, Macdonald RL, Sutcliffe JS (2009) Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism. Mol PsychiatryGoogle Scholar
  5. Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A, Martinez J (2002) Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monit 8:R1–R6Google Scholar
  6. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229PubMedCrossRefGoogle Scholar
  7. Greene AE, Todorova MT, Seyfried TN (2003) Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 86:529–537PubMedCrossRefGoogle Scholar
  8. Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, Sklar P, Owen MJ, O’Donovan MC, Craddock N (2009) Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. Am J Hum Genet 85:13–24PubMedCrossRefGoogle Scholar
  9. Hong MG, Pawitan Y, Magnusson PK, Prince JA (2009) Strategies and issues in the detection of pathway enrichment in genome-wide association studies. Hum Genet 126:289–301PubMedCrossRefGoogle Scholar
  10. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucl Acids Res 28:27–30PubMedCrossRefGoogle Scholar
  11. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de AM, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3:e98Google Scholar
  12. Ma D, Salyakina D, Jaworski JM, Konidari I, Whitehead PL, Andersen AN, Hoffman JD, Slifer SH, Hedges DJ, Cukier HN, Griswold AJ, McCauley JL, Beecham GW, Wright HH, Abramson RK, Martin ER, Hussman JP, Gilbert JR, Cuccaro ML, Haines JL, Pericak-Vance MA (2009) A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann Hum Genet 73:263–273PubMedCrossRefGoogle Scholar
  13. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605PubMedCrossRefGoogle Scholar
  14. O’Dushlaine C, Kenny E, Heron EA, Segurado R, Gill M, Morris DW, Corvin A (2009) The SNP ratio test: pathway analysis of genome-wide association datasets. Bioinformatics 25:2762–2763PubMedCrossRefGoogle Scholar
  15. Wang K, Li M, Bucan M (2007) Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet 81Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Brian L. Yaspan
    • 1
    • 2
  • William S. Bush
    • 1
    • 3
  • Eric S. Torstenson
    • 1
    • 2
    • 3
  • Deqiong Ma
    • 4
  • Margaret A. Pericak-Vance
    • 4
  • Marylyn D. Ritchie
    • 1
    • 2
    • 3
  • James S. Sutcliffe
    • 1
    • 2
  • Jonathan L. Haines
    • 1
    • 2
  1. 1.Center for Human Genetics ResearchVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleUSA
  4. 4.The John P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiUSA

Personalised recommendations