Human Genetics

, Volume 128, Issue 2, pp 145–153 | Cite as

Genome-wide analysis of the structure of the South African Coloured Population in the Western Cape

  • Erika de Wit
  • Wayne Delport
  • Chimusa E. Rugamika
  • Ayton Meintjes
  • Marlo Möller
  • Paul D. van Helden
  • Cathal Seoighe
  • Eileen G. Hoal
Original Investigation

Abstract

Admixed populations present unique opportunities to discover the genetic factors underlying many multifactorial diseases. The geographical position and complex history of South Africa has led to the establishment of the unique admixed population known as the South African Coloured. Not much is known about the genetic make-up of this population, and the historical record is patchy. We genotyped 959 individuals from the Western Cape area, self-identified as belonging to this population, using the Affymetrix 500k genotyping platform. This resulted in nearly 75,000 autosomal SNPs that could be compared with populations represented in the International HapMap Project and the Human Genome Diversity Project. Analysis by means of both the admixture and linkage models in STRUCTURE revealed that the major ancestral components of this population are predominantly Khoesan (32–43%), Bantu-speaking Africans (20–36%), European (21–28%) and a smaller Asian contribution (9–11%), depending on the model used. This is consistent with historical data. While of great historical and genealogical interest, this information is also essential for future admixture mapping of disease genes in this population.

Supplementary material

439_2010_836_MOESM1_ESM.tif (6 kb)
Figure S1 Estimates of the number of ancestral populations (K) for the SAC and combined HapMap and HGDP samples under an admixture model using the STRUCTURE software. The estimated probability of the data given the model is plotted against increasing K for each of the subsets of SNP data used (see Methods) (TIFF 6 kb)
439_2010_836_MOESM2_ESM.tif (601 kb)
Figure S2 Proportion of each individual’s ancestry for the number of ancestral populations from k = 2 to the estimated number of ancestral populations with greatest probability (Fig S1). Plots shown are for random linked SNPs (TIFF 600 kb)
439_2010_836_MOESM3_ESM.tif (256 kb)
Figure S3 Proportion of each individual’s ancestry for the number of ancestral populations from k = 2 to the estimated number of ancestral populations with greatest probability (Fig S1). Plots shown are for unlinked random SNPs (TIFF 256 kb)
439_2010_836_MOESM4_ESM.tif (357 kb)
Figure S4 Proportion of each individual’s ancestry for the number of ancestral populations from k = 2 to the estimated number of ancestral populations with greatest probability (Fig S1). Plots shown are for linked Ancestry Informative Markers (TIFF 356 kb)
439_2010_836_MOESM5_ESM.tif (102 kb)
Figure S5: Proportion of each individual’s ancestry derived using the linkage model in STRUCTURE for the optimal number of ancestral populations (K = 4) (TIFF 102 kb)
439_2010_836_MOESM6_ESM.pdf (23 kb)
Supplementary Tables (PDF 23 kb)

References

  1. Adhikari M (2005) Not white enough, not black enough: racial identity in the South African Coloured community. Ohio University PressGoogle Scholar
  2. Affymetrix (2006) BRLMM: an improved genotype calling method for the GeneChip Human Mapping 500K Array Set. AffymetrixGoogle Scholar
  3. Babb C, van der Merwe L, Beyers N, Pheiffer C, Walzl G, Duncan K, van Helden P, Hoal EG (2007) Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis 87:295–302CrossRefPubMedGoogle Scholar
  4. Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H, McElreavey K, Helden PD, Hoal EG, Gicquel B, Quintana-Murci L (2006) Promoter variation in the DC-SIGN encoding gene CD209 is associated with tuberculosis. PLoS Med 3:e20CrossRefPubMedGoogle Scholar
  5. Barth F (1969) Ethnic groups and boundaries: the social organization of culture difference. Little, Brown and company, BostonGoogle Scholar
  6. Boonzaaier E, Malherbe C, Smith A, Berens P (1996) The Cape Herders: a history of the Khoikhoi of Southern Africa. David Philip Publishers, Cape TownGoogle Scholar
  7. Botha MC (1972) Blood group gene frequencies. An indication of the genetic constitution of population samples in Cape Town. Am J Roentgenol Radium Ther Nucl Med 115:Suppl 27Google Scholar
  8. Campbell MC, Tishkoff SA (2008) African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 9:403–433CrossRefPubMedGoogle Scholar
  9. Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L, Bodmer J, Bodmer WF, Bonne-Tamir B, Cambon-Thomsen A, Chen Z, Chu J, Carcassi C, Contu L, Du R, Excoffier L, Ferrara GB, Friedlaender JS, Groot H, Gurwitz D, Jenkins T, Herrera RJ, Huang X, Kidd J, Kidd KK, Langaney A, Lin AA, Mehdi SQ, Parham P, Piazza A, Pistillo MP, Qian Y, Shu Q, Xu J, Zhu S, Weber JL, Greely HT, Feldman MW, Thomas G, Dausset J, Cavalli-Sforza LL (2002) A human genome diversity cell line panel. Science 296:261–262CrossRefPubMedGoogle Scholar
  10. Cilliers SP (1963) The Coloureds of South Africa: a factual survey. Banier Publishers (Pty) Ltd, Cape TownGoogle Scholar
  11. Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, Pritchard JK (2006) A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet 38:1251–1260CrossRefPubMedGoogle Scholar
  12. Cooke GS, Campbell SJ, Bennett S, Lienhardt C, McAdam KP, Sirugo G, Sow O, Gustafson P, Mwangulu F, van HP, Fine P, Hoal EG, Hill AV (2008) Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med 178:203–207Google Scholar
  13. Elphick R (1985) Khoikhoi and the founding of White South Africa. Ravan Press, JohannesburgGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  15. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MMY, Tsui SKW, Xue H, Wong JT-F, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallée C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PKH, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PIW, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe’er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CDM, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L’Archevêque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861CrossRefPubMedGoogle Scholar
  16. Greeff JM (2007) Deconstructing Jaco: genetic heritage of an Afrikaner. Ann Hum Genet 71:674–688CrossRefPubMedGoogle Scholar
  17. Heese JA (1971) Die Herkoms van die Afrikaner, 1657–1867. A Balkema, Cape TownGoogle Scholar
  18. Hoal EG, Lewis L-A, Jamieson SE, Tanzer F, Rossouw M, Victor T, Hillerman R, Beyers N, Blackwell JM, van Helden PD (2004) SLC11A1 (NRAMP1) but not SLC11A2 (NRAMP2) polymorphisms are associated with susceptibility to tuberculosis in a high-incidence community in South Africa. Int J Tuberc Lung Dis 8:1464–1471PubMedGoogle Scholar
  19. Keegan T (1996) Colonial South Africa and the origins of the racial order. David Philip Publishers, Cape TownGoogle Scholar
  20. Kritzinger FE, den BS, Verver S, Enarson DA, Lombard CJ, Borgdorff MW, Gie RP, Beyers N (2009) No decrease in annual risk of tuberculosis infection in endemic area in Cape Town, South Africa. Trop Med Int Health 14:136–142Google Scholar
  21. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319:1100–1104CrossRefPubMedGoogle Scholar
  22. McKeigue PM (1997) Mapping genes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. Am J Hum Genet 60:188–196PubMedGoogle Scholar
  23. Möller M, Kwiatkowski R, Nebel A, van Helden PD, Hoal EG, Schreiber S (2007) Allelic variation in BTNL2 and susceptibility to tuberculosis in a South African population. Microbes Infect 9:522–528CrossRefPubMedGoogle Scholar
  24. Möller M, Nebel A, Valentonyte R, van Helden PD, Schreiber S, Hoal EG (2009) Investigation of chromosome 17 candidate genes in susceptibility to TB in a South African population. Tuberculosis (Edinb) 89:189–194CrossRefGoogle Scholar
  25. Montana G, Pritchard JK (2004) Statistical tests for admixture mapping with case–control and cases-only data. Am J Hum Genet 75:771–789CrossRefPubMedGoogle Scholar
  26. Mountain A (2003) The first people of the Cape, 1st edn. David Philips Publishers, Cape TownGoogle Scholar
  27. Mountain A (2004) An unsung heritage. David Philip Publishers, Cape TownGoogle Scholar
  28. Nurse GT, Weiner JS, Jenkins T (1985) The peoples of Southern Africa and their affinities. Clarendon Press, OxfordGoogle Scholar
  29. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190CrossRefPubMedGoogle Scholar
  30. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefPubMedGoogle Scholar
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  32. Quintana-Murci L, Harmant C, Quach H, Balanovsky O, Zaporozhchenko V, Bormans C, van Helden PD, Hoal EG, Behar DM (2010) Strong maternal Khoisan contribution to the South African Coloured population: a case of gender-biased admixture. Am J Hum Genet 86:611–620CrossRefPubMedGoogle Scholar
  33. Rosenberg N (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  34. Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73:1402–1422CrossRefPubMedGoogle Scholar
  35. Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG (2003) Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 361:1871–1872CrossRefPubMedGoogle Scholar
  36. Seldin MF (2007) Admixture mapping as a tool in gene discovery. Curr Opin Genet Dev 17:177–181CrossRefPubMedGoogle Scholar
  37. Shell R (1994) Children of bondage. Witwatersrand University Press, JohannesburgGoogle Scholar
  38. Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322:422–427PubMedCrossRefGoogle Scholar
  39. Tang H, Peng J, Wang P, Risch NJ (2005) Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol 28:289–301CrossRefPubMedGoogle Scholar
  40. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320CrossRefGoogle Scholar
  41. Thorp CR (2000) Hunter-Gatherers and farmers: an enduring frontier in the Caledon Valley, South Africa. Publishers of British Archaeological ReportsGoogle Scholar
  42. Tishkoff SA, Kidd KK (2004) Implications of biogeography of human populations for ‘race’ and medicine. Nat Genet 36:S21–S27CrossRefPubMedGoogle Scholar
  43. Tishkoff SA, Williams SM (2002) Genetic analysis of African populations: human evolution and complex disease. Nat Rev Genet 3:611–621CrossRefPubMedGoogle Scholar
  44. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, Hirbo JB, Awomoyi AA, Bodo JM, Doumbo O, Ibrahim M, Juma AT, Kotze MJ, Lema G, Moore JH, Mortensen H, Nyambo TB, Omar SA, Powell K, Pretorius GS, Smith MW, Thera MA, Wambebe C, Weber JL, Williams SM (2009) The genetic structure and history of Africans and African Americans. Science 324:1035–1044CrossRefPubMedGoogle Scholar
  45. Van der Ross RE (1993) 100 questions about Coloured South Africans. UWC Printing Department, Cape TownGoogle Scholar
  46. Zhu X, Zhang S, Tang H, Cooper R (2006) A classical likelihood based approach for admixture mapping using EM algorithm. Hum Genet 120:431–445CrossRefPubMedGoogle Scholar
  47. Zhu X, Tang H, Risch N (2008) Admixture mapping and the role of population structure for localizing disease genes. Adv Genet 60:547–569CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Erika de Wit
    • 1
  • Wayne Delport
    • 2
    • 3
  • Chimusa E. Rugamika
    • 3
  • Ayton Meintjes
    • 3
  • Marlo Möller
    • 1
  • Paul D. van Helden
    • 1
  • Cathal Seoighe
    • 4
  • Eileen G. Hoal
    • 1
  1. 1.Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
  2. 2.Department of Pathology, Antiviral Research CenterUniversity of CaliforniaSan DiegoUSA
  3. 3.Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
  4. 4.School of Mathematics, Statistics and Applied MathematicsNational University of IrelandGalwayIreland

Personalised recommendations