Human Genetics

, 124:123 | Cite as

Evolutionary dynamics of the human ABO gene

  • Francesc CalafellEmail author
  • Francis Roubinet
  • Anna Ramírez-Soriano
  • Naruya Saitou
  • Jaume Bertranpetit
  • Antoine Blancher
Original Investigation


The ABO polymorphism has long been suspected to be under balancing selection. To explore this possibility, we analyzed two datasets: (1) a set of 94 23-Kb sequences in European- and African-Americans produced by the Seattle SNPs project, and (2) a set of 814 2-Kb sequences in O alleles from seven worldwide populations. A phylogenetic analysis of the Seattle sequences showed a complex pattern in which the action of recombination and gene conversion are evident, and in which four main lineages could be individuated. The sequence patterns could be linked to the expected blood group phenotype; in particular, the main mutation giving rise to the null O allele is likely to have appeared at least three times in human evolution, giving rise to allele lineages O02, O01, and O09. However, the genealogy changes along the gene and variations of both numbers of branches and of their time depth were observed, which could result from a combined action of recombination and selection. Several neutrality tests clearly demonstrated deviations compatible with balancing selection, peaking at several locations along the gene. The time depth of the genealogy was also incompatible with neutral evolution, particularly in the region from exons 6 to 7, which codes for most of the catalytic domain.


Gene Conversion Event Ancient Lineage General Time Reversible Allele Lineage Analysis Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to especially thank Deborah Nickerson at the University of Washington, for making the excellently curated Seattle SNP sequence database openly available to researchers. This work was supported by grants BFU2004-02002 and BFU2007-63657 from the Spanish Ministry of Education and Science, and DURSI, Generalitat de Catalunya (Grup de Recerca Consolidat 2005SGR00608), as well as with funds from Etablissement Français du Sang (EFS) Pyrénées-Méditerranée and Centre Atlantique, and from Ministère Français de la Recherche (EA3034).

Supplementary material

439_2008_530_MOESM1_ESM.doc (21 kb)
MOESM1 (DOC 21 kb)


  1. Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA, Kruglyak L (2004) Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2:e286PubMedCrossRefGoogle Scholar
  2. Ardell DH (2004) SCANMS: adjusting for multiple comparisons in sliding window neutrality tests. Bioinformatics 20:1986–1988PubMedCrossRefGoogle Scholar
  3. Barbujani G, Magagni A, Minch E, Cavalli-Sforza LL (1997) An apportionment of human DNA diversity. Proc Natl Acad Sci USA 94:4516–4519PubMedCrossRefGoogle Scholar
  4. Bertranpetit J, Calafell F (1996) Genetic and geographical variability in cystic fibrosis: evolutionary considerations. Ciba Found Symp 197:97–114PubMedGoogle Scholar
  5. Blancher A, Socha WW (1997) The ABO, Hh and Lewis blood groups in man and nonhuman primates. In: Blancher A, Jan Klein J, Socha WW (eds) Molecular biology and evolution of blood group and mhc antigens in primates. Springer, Heidelberg, pp 30–92Google Scholar
  6. Borén T, Falk P, Roth KA, Larson G, Normark S (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892–1895PubMedCrossRefGoogle Scholar
  7. Bubb KL, Bovee D, Buckley D, Haugen E, Kibukawa M, Paddock M, Palmieri A, Subramanian S, Zhou Y, Kaul R, Green P, Olson MV (2006) Scan of human genome reveals no new Loci under ancient balancing selection. Genetics 173:2165–2177PubMedCrossRefGoogle Scholar
  8. Calafell F, Shuster A, Speed WC, Kidd JR, Kidd KK (1998) Short tandem repeat polymorphism evolution in humans. Eur J Hum Genet 6:38–49PubMedCrossRefGoogle Scholar
  9. Chester MA, Olsson ML (2001) The ABO blood group gene: a locus of considerable genetic diversity. Transfus Med Rev 15:177–200PubMedCrossRefGoogle Scholar
  10. Conde L, Vaquerizas J, Dopazo H, Arbiza L, Reumers J, Rousseau F, Schymkowitz J, Dopazo J (2006) PupaSuite: finding functional SNPs for large-scale genotyping purposes. Nucleic Acids Res 34:621–625CrossRefGoogle Scholar
  11. Cserti CM, Dzik WH (2007) The ABO blood group system and Plasmodium falciparum malaria. Blood 110:2250–2258PubMedCrossRefGoogle Scholar
  12. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  13. Fischer C, Jock B, Vogel F (1998) Interplay between humans and infective agents: a population genetic study. Hum Genet 102:415–422PubMedCrossRefGoogle Scholar
  14. Fry AE, Griffiths MJ, Auburn S, Diakite M, Forton JT, Green A, Richardson A, Wilson J, Jallow M, Sisay-Joof F, Pinder M, Peshu N, Williams TN, Marsh K, Molyneux ME, Taylor TE, Rockett KA, Kwiatkowski DP (2007) Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria. Hum Mol Genet 17:567–576PubMedCrossRefGoogle Scholar
  15. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  16. Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–755PubMedCrossRefGoogle Scholar
  17. Grunnet N, Steffensen R, Bennett EP, Clausen H (1994) Evaluation of histo-blood group ABO genotyping in a Danish population: frequency of a novel O allele defined as O2. Vox Sang 67:210–215PubMedGoogle Scholar
  18. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  19. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  20. Kermarrec N, Roubinet F, Apoil PA, Blancher A (1999) Comparison of allele O sequences of the human and non-human primate ABO system. Immunogenetics 49:517–526PubMedCrossRefGoogle Scholar
  21. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247PubMedGoogle Scholar
  22. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901PubMedCrossRefGoogle Scholar
  23. Kreitman M, Di Rienzo A (2004) Balancing claims for balancing selection. Trends Genet 20:300–304PubMedCrossRefGoogle Scholar
  24. Landsteiner K (1901) Über Agglutinationserscheinungen normalen menschlichen Blutes. Wien Klin Wochenschr 14:1132–1134Google Scholar
  25. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9:548–553PubMedCrossRefGoogle Scholar
  26. Marionneau S, Cailleau-Thomas A, Rocher J, Le Moullac-Vaidye B, Ruvoen N, Clement M, Le Pendu J (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83:565–573PubMedCrossRefGoogle Scholar
  27. Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, Huang P, Jiang X, Le Pendu J (2002) Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122:1967–1977PubMedCrossRefGoogle Scholar
  28. Mateu E, Calafell F, Lao O, Bonne-Tamir B, Kidd JR, Pakstis A, Kidd KK, Bertranpetit J (2001) Worldwide genetic analysis of the CFTR region. Am J Hum Genet 68:103–117PubMedCrossRefGoogle Scholar
  29. Morral N, Bertranpetit J, Estivill X, Nunes V, Casals T, Giménez J, Reis A, Varon-Mateeva R, Macek M, Kalaydjieva L, Angelicheva D, Dancheva R, Romeo G, Russo MP, Garnerone S, Restagno G, Ferrari M, Magnani C, Claustres M, Desgeorges M, Schwartz M, Schwarz M, Dallapiccola B, Novelli G, Ferec C, de Arce M, Nemeti M, Kere J, Anvret M, Dahl N, Ferak V (1994) Tracing the origin of the major cystic fibrosis mutation (ΔF508) in European populations. Nature Genet 7:169–175PubMedCrossRefGoogle Scholar
  30. Mourant AE (1954) The ABO blood groups. Blackwell, OxfordGoogle Scholar
  31. Mourant AE, Kopec AC, Domaniewska-Sobczak K (1978) Blood groups and diseases. Oxford University Press, OxfordGoogle Scholar
  32. Nordborg M (2001) Coalescent theory. In: Balding J, Bishop M, Cannings C (eds) Handbook of statistical genetics. Wiley, Chichester, pp 179–208Google Scholar
  33. Ogasawara K, Bannai M, Saitou N, Yabe R, Nakata K, Takenaka M, Fujisawa K, Uchikawa M, Ishikawa Y, Juji T, Tokunaga K (1996a) Extensive polymorphism of ABO blood group gene: three major lineages of the alleles for the common ABO phenotypes. Hum Genet 97:777–783PubMedCrossRefGoogle Scholar
  34. Ogasawara K, Yabe R, Uchikawa M, Saitou N, Bannai M, Nakata K, Takenaka M, Fujisawa K, Ishikawa Y, Juji T, Tokunaga K (1996b) Molecular genetic analysis of variant phenotypes of the ABO blood group system. Blood 88:2732–2737PubMedGoogle Scholar
  35. Ogasawara K, Yabe R, Uchikawa M, Nakata K, Watanabe J, Takahashi Y, Tokunaga K (2001) Recombination and gene conversion-like events may contribute to ABO gene diversity causing various phenotypes. Immunogenetics 53:190–199PubMedCrossRefGoogle Scholar
  36. Olsson ML, Chester MA (1996a) Evidence for a new type of O allele at the ABO locus, due to a combination of the A2 nucleotide deletion and the Ael nucleotide insertion. Vox Sang 71:113–117PubMedCrossRefGoogle Scholar
  37. Olsson ML, Chester MA (1996b) Frequent occurrence of a variant O1 gene at the blood group ABO locus. Vox Sang 70:26–30PubMedCrossRefGoogle Scholar
  38. Olsson ML, Chester MA (2001) Polymorphism and recombination events at the ABO locus: a major challenge for genomic ABO blood grouping strategies. Transfus Med 11:295–313PubMedCrossRefGoogle Scholar
  39. Olsson ML, Guerreiro JF, Zago MA, Chester MA (1997) Molecular analysis of the O alleles at the blood group ABO locus in populations of different ethnic origin reveals novel crossing-over events and point mutations. Biochem Biophys Res Commun 234:779–782PubMedCrossRefGoogle Scholar
  40. Olsson ML, Santos SE, Guerreiro JF, Zago MA, Chester MA (1998) Heterogeneity of the O alleles at the blood group ABO locus in Amerindians. Vox Sang 74:46–50PubMedCrossRefGoogle Scholar
  41. Ramírez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A (2008) Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179:555–567PubMedCrossRefGoogle Scholar
  42. Romualdi C, Balding D, Nasidze IS, Risch G, Robichaux M, Sherry ST, Stoneking M, Batzer MA, Barbujani G (2002) Patterns of human diversity, within and among continents, inferred from biallelic DNA polymorphisms. Genome Res 12:602–612PubMedCrossRefGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  44. Roubinet F, Kermarrec N, Despiau S, Apoil PA, Dugoujon JM, Blancher A (2001) Molecular polymorphism of O alleles in five populations of different ethnic origins. Immunogenetics 53:95–104PubMedCrossRefGoogle Scholar
  45. Roubinet F, Despiau S, Calafell F, Jin F, Bertanpetit J, Saitou N, Blancher A (2004) Evolution of the O alleles of the human ABO blood group gene. Transfusion 44:707–715PubMedCrossRefGoogle Scholar
  46. Rowe JA, Handel IG, Thera MA, Deans AM, Lyke KE, Kone A, Diallo DA, Raza A, Kai O, Marsh K, Plowe CV, Doumbo OK, Moulds JM (2007) Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc Natl Acad Sci USA 104:17471–17476PubMedCrossRefGoogle Scholar
  47. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  48. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS (2003) Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 278:14112–14120PubMedCrossRefGoogle Scholar
  49. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES (2006) Positive natural selection in the human lineage. Science 312:1614–1620PubMedCrossRefGoogle Scholar
  50. Saillard J, Forster P, Lynnerup N, Bandelt HJ, Nørby S (2000) mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 67:718–726PubMedCrossRefGoogle Scholar
  51. Saitou N, Yamamoto F (1997) Evolution of primate ABO blood group genes and their homologous genes. Mol Biol Evol 14:399–411PubMedGoogle Scholar
  52. Seltsam A, Hallensleben M, Kollmann A, Blasczyk R (2003) The nature of diversity and diversification at the ABO locus. Blood 102:3035–3042PubMedCrossRefGoogle Scholar
  53. Soldevila M, Calafell F, Heigason A, Stefansson K, Bertranpetit J (2005) Assessing the signatures of selection in PRNP from polymorphism data: results support Kreitman and Di Rienzo’s opinion. Trends Genet 21:389–391PubMedCrossRefGoogle Scholar
  54. Stajich JE, Hahn MW (2005) Disentangling the effects of demography and selection in human history. Mol Biol Evol 22:63–73PubMedCrossRefGoogle Scholar
  55. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462PubMedCrossRefGoogle Scholar
  56. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefGoogle Scholar
  57. Swerdlow DL, Mintz ED, Rodriguez M, Tejada E, Ocampo C, Espejo L, Barrett TJ, Petzelt J, Bean NH, Seminario L, Tauxe RV (1994) Severe life-threatening cholera associated with blood group O in Peru: implications for the Latin American epidemic. J Infect Dis 170:468–472PubMedGoogle Scholar
  58. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  59. Takahata N, Satta Y, Klein J (1995) Divergence and population size in the lineage leading to modern humans. Theor Popul Biol 48:198–221PubMedCrossRefGoogle Scholar
  60. The Chimpanzee Sequencing Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  61. Tishkoff SA, Dietzch E, Speed W, Pakstis AJ, Kidd JR, Cheung K, Bonné-Tamir B, Santachiara-Benerecetti S, Moral P, Krings M, Pääbo S, Watson E, Risch N, Jenkins T, Kidd KK (1996) Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science 271:1380–1387PubMedCrossRefGoogle Scholar
  62. Tishkoff SA, Goldman A, Calafell F, Speed WC, Deinard AS, Bonne-Tamir B, Kidd JR, Pakstis AJ, Jenkins T, Kidd KK (1998) A global haplotype analysis of the myotonic dystrophy locus: implications for the evolution of modern humans and for the origin of myotonic dystrophy mutations. Am J Hum Genet 62:1389–1402PubMedCrossRefGoogle Scholar
  63. Wiuf C, Zhao K, Innan H, Nordborg M (2004) The probability and chromosomal extent of trans-specific polymorphism. Genetics 168:2363–2372PubMedCrossRefGoogle Scholar
  64. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373PubMedCrossRefGoogle Scholar
  65. Yamamoto F (2000) Molecular genetics of ABO. Vox Sang 78(Suppl 2):91–103PubMedGoogle Scholar
  66. Yamamoto F (2004) Review: ABO blood group system–ABH oligosaccharide antigens, anti-A and anti-B, A and B glycosyltransferases, and ABO genes. Immunohematol 20:3–22Google Scholar
  67. Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990a) Molecular genetic basis of the histo-blood group ABO system. Nature 345:229–233PubMedCrossRefGoogle Scholar
  68. Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S (1990b) Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuc alpha 1—2Gal alpha 1—3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 265:1146–1151PubMedGoogle Scholar
  69. Yamamoto F, McNeill PD, Yamamoto M, Hakomori S, Bromilow IM, Duguid JK (1993) Molecular genetic analysis of the ABO blood group system: 4. Another type of O allele. Vox Sang 64:175–178PubMedGoogle Scholar
  70. Yamamoto F, McNeill PD, Hakomori S (1995) Genomic organization of human histo-blood group ABO genes. Glycobiology 5:51–58PubMedCrossRefGoogle Scholar
  71. Yip SP (2000) Single-tube multiplex PCR-SSCP analysis distinguishes 7 common ABO alleles and readily identifies new alleles. Blood 95:1487–1492PubMedGoogle Scholar
  72. Yip SP (2002) Sequence variation at the human ABO locus. Ann Hum Genet 66:1–27PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Francesc Calafell
    • 1
    • 2
    Email author
  • Francis Roubinet
    • 3
    • 4
  • Anna Ramírez-Soriano
    • 1
  • Naruya Saitou
    • 5
  • Jaume Bertranpetit
    • 1
    • 2
  • Antoine Blancher
    • 4
  1. 1.Unitat de Biologia Evolutiva, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain
  2. 2.CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
  3. 3.Etablissement Français du sang Centre AtlantiqueCedex 1France
  4. 4.Laboratoire d’Immunogénétique Moléculaire, Faculté de Médecine PurpanUniversité Paul Sabatier Toulouse IIIToulouse Cedex 4France
  5. 5.Division of Population GeneticsNational Institute of GeneticsMishimaJapan

Personalised recommendations