Human Genetics

, Volume 123, Issue 2, pp 177–187 | Cite as

Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression

  • Hans Eiberg
  • Jesper Troelsen
  • Mette Nielsen
  • Annemette Mikkelsen
  • Jonas Mengel-From
  • Klaus W. Kjaer
  • Lars Hansen
Original Investigation

Abstract

The human eye color is a quantitative trait displaying multifactorial inheritance. Several studies have shown that the OCA2 locus is the major contributor to the human eye color variation. By linkage analysis of a large Danish family, we finemapped the blue eye color locus to a 166 Kbp region within the HERC2 gene. By association analyses, we identified two SNPs within this region that were perfectly associated with the blue and brown eye colors: rs12913832 and rs1129038. Of these, rs12913832 is located 21.152 bp upstream from the OCA2 promoter in a highly conserved sequence in intron 86 of HERC2. The brown eye color allele of rs12913832 is highly conserved throughout a number of species. As shown by a Luciferase assays in cell cultures, the element significantly reduces the activity of the OCA2 promoter and electrophoretic mobility shift assays demonstrate that the two alleles bind different subsets of nuclear extracts. One single haplotype, represented by six polymorphic SNPs covering half of the 3′ end of the HERC2 gene, was found in 155 blue-eyed individuals from Denmark, and in 5 and 2 blue-eyed individuals from Turkey and Jordan, respectively. Hence, our data suggest a common founder mutation in an OCA2 inhibiting regulatory element as the cause of blue eye color in humans. In addition, an LOD score of Z = 4.21 between hair color and D14S72 was obtained in the large family, indicating that RABGGTA is a candidate gene for hair color.

Supplementary material

439_2007_460_MOESM1_ESM.doc (99 kb)
Supplementary Tables (DOC 99 kb)

References

  1. Ancans J, Tobin DJ, Hoogduijn MJ, Smit NP, Wakamatsu K, Thody AJ (2001). Melanosomal pH controls rate of melanogenesis, eumelanin/ phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp Cell Res 268:26–35PubMedCrossRefGoogle Scholar
  2. Carter D, Chakalova L, Osborne CS, Dai Y-F, Fraser P (2002). Long-range chromatin regulatory interactions in vivo. Nat Genet 32:623–626PubMedCrossRefGoogle Scholar
  3. Cavalli-Sforza LL, Menozzi P, Piazza A (1994). The History and geography of Human genes. Princeton University Press, PrincetonGoogle Scholar
  4. Duffy DL, Box NF, Chen W, Palmer JS, Montgomery GW, James MR, Hayward NK, Nicholas G, Martin NG, Sturm RA (2007). A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. Am J Hum Genet 80:241–252PubMedCrossRefGoogle Scholar
  5. Eiberg H, Mohr J (1996). Assignment of genes coding for brown eye colour (BEY2) and brown hair colour (HCL3) on chromosome 15q. Eur J Hum Genet 4:237–241PubMedGoogle Scholar
  6. Eiberg H, Nielsen LS, Klausen J, Dahlén M, Kristensen M, Bisgaard ML, Møller N, Mohr J (1989). Linkage between serum cholinesterase 2 (CHE2) and δ-crystalline gene cluster (CRYG): assignment to chromosome 2. Clin Genet 35:313-321PubMedCrossRefGoogle Scholar
  7. Frudakis T, Thomas M, Gaskin Z, Venkateswarlu K, Chandra KS, Ginjupalli S, Gunturi S, Natrajan S, Ponnuswamy VK, Ponnuswamy KN (2003). Sequences associated with Human iris pigmentation. Genetics 165:2071–2083PubMedGoogle Scholar
  8. Frudakis T, Terravainen T, Thomas M (2007) Multilocus OCA2 genotypes specify human iris colors. Hum Genet 122:311–326. doi:10.1007/s00439-007-0401-8 PubMedCrossRefGoogle Scholar
  9. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA et al (1998) Databases on transcriptional regulation: TRANSFAC, TRRD, and COMPEL. Nucleic Acids Res 26:364–370CrossRefGoogle Scholar
  10. Lamoreux ML, Zhou BK, Rosemblat S, Orlow SJ (1995) The pinkeyed-dilution protein and the eumelanin/pheomelanin switch: in support of a unifying hypothesis. Pigment Cell Res 8:263–270PubMedCrossRefGoogle Scholar
  11. Lee ST, Nicholls RD, Jong MT, Fukai K, Spritz RA (1995). Organization and sequence of the human P gene and identification of a new family of transport proteins. Genomics 20:354–63CrossRefGoogle Scholar
  12. Lehman AL, Nakatsu Y, Ching A, Bronson RT, Oakey RJ, Keiper-Hrynko N, Finger JN, Durham-Pierre D, Horton DB (1998) A very large protein with diverse functional motifs is deficient in rjs (runty, jerky, sterile) mice. Proc Natl Acad Sci USA 95:9436–9441PubMedCrossRefGoogle Scholar
  13. Myant NB, Fobes SA, Day INM, Gallagher J (1997) Estimation of the age of Ancestral Argenine3500 → Glutamine mutation in Human ApoB-100. Genomic 45:78–87CrossRefGoogle Scholar
  14. Novak EK, Reddington M, Zhen L, Stenberg PE, Jackson CW, McGarry MP, Swank RT (1995) Inherited thrombocytopenia caused by reduced platelet production in mice with the gunmetal pigment gene mutation. Blood 85:1781–1789PubMedGoogle Scholar
  15. Posthuma D, Visscher PM, Willemsen G, Zhu G, Martin NG, Slagboom PE, de Geus EJ, Boomsma DI (2006). Replicated linkage for eye color on 15q using comparative ratings of sibling pairs. Behav Genet 36:12–17PubMedCrossRefGoogle Scholar
  16. Puri N, Gardner JM, Brilliant MH (2000). Aberrant pH of melanosomes in pink-eyed dilution (P) mutant melanocytes. J Invest Dermatol 115:607–613PubMedCrossRefGoogle Scholar
  17. Rebbeck TR, Kanetsky PA, Walker AH, Holmes R, Halpern AC, Schuchter LM, Elder DE, Guerry D (2002). P gene as an inherited biomarker of human eye color. Cancer Epidemiol Biomarkers Prev 11:782–784PubMedGoogle Scholar
  18. Remenyi A, Scholer HR, Wilmanns M (2004). Combinatorial control of gene expression. Nat Struct Mol Biol 11:812–815PubMedCrossRefGoogle Scholar
  19. Russell LB, Montgomery CS, Casheiro NLA, Johnaso DK (1995) Complementation analysis of 45 mutations encompassing the pink-eyed dilution locus of the mouse. Genetics 141:1547–1562PubMedGoogle Scholar
  20. Schäffer AA, Gupta SK, Shriram K, Cottingham RW Jr (1994). Recomputation in linkage analysis. Hum Hered 44:225–237PubMedCrossRefGoogle Scholar
  21. Spritz RA, Bailin T, Nicholls RD, Lee ST, Park SK, Mascari MJ, Butler MG (1997). Hypopigmentation in the Prader-Willi syndrome correlates with P gene deletion but not with haplotype of the hemizygous P allele. Am J Med Genet 71:57–62PubMedCrossRefGoogle Scholar
  22. Sturm RA, Teasdale RD, Box NF (2001) Human pigmentation genes; identification, structure and consequences of polymorphic variation. Gene 277:49–62PubMedCrossRefGoogle Scholar
  23. Toyofuku K, Valencia JC, Kushimoto T, Costin GE, Virador VM, Vieira WD, Ferrans VJ, Hearing VJ (2002). The etiology of oculocutaneous albinism (OCA) type II: the pink protein modulates the processing and transport of tyrosinase. Pigment Cell Res 5:217–224CrossRefGoogle Scholar
  24. Troelsen JT, Mitchelmore C, Olsen J (2003a) An enhancer activates the pig lactase phlorizin hydrolase promoter in intestinal cells. Gene 305:101–111PubMedCrossRefGoogle Scholar
  25. Troelsen JT, Olsen J, Møller J, Sjöström H (2003b). An upstream polymorphism associated with lactase persistence has increased enhancer activity. Gastroenterology 125:1686–1694PubMedCrossRefGoogle Scholar
  26. Yonggang J, Rebert NA, Joslin JM, Higgins J, Schultz RA, Nicholls RD (2000). Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in Human. Genome Res 10:319–329CrossRefGoogle Scholar
  27. Zhu G, Evans DM, Duffy DL, Montgomery GW, Medland SE, Gillespie NA, Ewen KR, Jewell M, Liew YW, Hayward NK, et al (2004). A genome scan for eye color in 502 twin families: most variation is due to a QTL on chromosome 15q. Twin Res 7:197–210PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hans Eiberg
    • 1
  • Jesper Troelsen
    • 1
  • Mette Nielsen
    • 1
  • Annemette Mikkelsen
    • 1
  • Jonas Mengel-From
    • 2
  • Klaus W. Kjaer
    • 1
    • 3
  • Lars Hansen
    • 1
    • 3
  1. 1.Department of Cellular and Molecular Medicine, Section IV Build. 24.4, Panum InstituteUniversity of CopenhagenCopenhagenDenmark
  2. 2.Institute of Forensic GeneticsUniversity of CopenhagenCopenhagenDenmark
  3. 3.The Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Panum InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations