Skip to main content
Log in

Evidence for a large double-cruciform DNA structure on the X chromosome of human and chimpanzee

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The human X chromosome consists of a high number of large inverted repeat (IR) DNA sequences which fulfill all requirements for formation of cruciform DNA structures. Such alternative DNA structures are suggested to have a great impact in altering the chromatin architecture and function. Our comprehensive analysis of the corresponding orthologous nucleotide sequences of an IR sequence from Homo sapiens and Pan troglodytes revealed that most of the nucleotide differences between the two species are symmetrical to the apex of the IR, and that the spacer region of the orthologous IRs are in reverse orientation. We provide evidence that this IR forms a large non-B DNA structure containing two Holliday junctions, allowing intrastrand nucleotide pairing of the arms and interstrand pairing of the spacer region of the IR. This structure would extrude into a large double-cruciform DNA structure providing the molecular basis of translocation events and regulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bacolla A, Jaworski A, Larson JE, Jakupciak JP, Chuzhanova N, Abeysinghe SS, O’Connell CD, Cooper DN, Wells RD (2004) Breakpoints of gross deletions coincide with non-B DNA conformations. Proc Natl Acad Sci USA 101:14162–14167

    Article  PubMed  CAS  Google Scholar 

  • Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E (1996) Standardized nomenclature for Alu repeats. J Mol Evol 42:3–6

    Article  PubMed  CAS  Google Scholar 

  • Caiulo A, Bardoni B, Camerino G, Guioli S, Minelli A, Piantanida M, Crosato F, Dalla Fior T, Maraschio P (1989) Cytogenetic and molecular analysis of an unbalanced translocation (X;7) (q28;p15) in a dysmorphic girl. Hum Genet 84:51–54

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Ventura M, She X, Khaitovich P, Graves T, Osoegawa K, Church D, DeJong P, Wilson RK, Paabo S, Rocchi M, Eichler EE (2005) A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437:88–93

    Article  PubMed  CAS  Google Scholar 

  • Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA, Cooper CS (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508

    Article  PubMed  CAS  Google Scholar 

  • De Plaen E, Arden K, Traversari C, Gaforio JJ, Szikora JP, De Smet C, Brasseur F, van der Bruggen P, Lethe B, Lurquin C et al (1994) Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40:360–369

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Slagel VK (1988) Recently amplified Alu family members share a common parental Alu sequence. Mol Cell Biol 8:4566–4569

    PubMed  CAS  Google Scholar 

  • Gotter AL, Nimmakayalu MA, Jalali GR, Hacker AM, Vorstman J, Conforto Duffy D, Medne L, Emanuel BS (2007) A palindrome-driven complex rearrangement of 22q11.2 and 8q24.1 elucidated using novel technologies. Genome Res 17:470–481

    Article  PubMed  CAS  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Article  Google Scholar 

  • Jeffreys AJ, May CA (2004) Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 36:151–156

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi H, Emanuel BS (2001) Unexpectedly high rate of de novo constitutional t(11;22) translocations in sperm from normal males. Nat Genet 29:139–140

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi H, Shaikh TH, Hu P, Roe BA, Emanuel BS, Budarf ML (2000) Regions of genomic instability on 22q11 and 11q23 as the etiology for the recurrent constitutional t(11;22). Hum Mol Genet 9:1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi H, Inagaki H, Yamada K, Ohye T, Taniguchi M, Emanuel BS, Toda T (2004) Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations. J Biol Chem 279:35377–35383

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi H, Inagaki H, Ohye T, Kogo H, Kato T, Emanuel BS (2006) Chromosomal translocations mediated by palindromic DNA. Cell Cycle 5:1297–1303

    PubMed  CAS  Google Scholar 

  • Kurahashi H, Inagaki H, Hosoba E, Kato T, Ohye T, Kogo H, Emanuel BS (2007) Molecular cloning of a translocation breakpoint hotspot in 22q11. Genome Res 17:461–469

    Article  PubMed  CAS  Google Scholar 

  • Lilley DM, White MF (2001) The junction-resolving enzymes. Nat Rev Mol Cell Biol 2:433–443

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, West SC (2004) Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5:937–944

    Article  PubMed  CAS  Google Scholar 

  • Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M (1996) Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 63:1–22

    Article  PubMed  CAS  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP, Frankish A, Lovell FL, Howe KL, Ashurst JL, Fulton RS, Sudbrak R, Wen G, Jones MC, Hurles ME, Andrews TD, Scott CE, Searle S, Ramser J, Whittaker A, Deadman R, Carter NP, Hunt SE, Chen R, Cree A, Gunaratne P, Havlak P, Hodgson A, Metzker ML, Richards S, Scott G, Steffen D, Sodergren E, Wheeler DA, Worley KC, Ainscough R, Ambrose KD, Ansari-Lari MA, Aradhya S, Ashwell RI, Babbage AK, Bagguley CL, Ballabio A, Banerjee R, Barker GE, Barlow KF, Barrett IP, Bates KN, Beare DM, Beasley H, Beasley O, Beck A, Bethel G, Blechschmidt K, Brady N, Bray-Allen S, Bridgeman AM, Brown AJ, Brown MJ, Bonnin D, Bruford EA, Buhay C, Burch P, Burford D, Burgess J, Burrill W, Burton J, Bye JM, Carder C, Carrel L, Chako J, Chapman JC, Chavez D, Chen E, Chen G, Chen Y, Chen Z, Chinault C, Ciccodicola A, Clark SY, Clarke G, Clee CM, Clegg S, Clerc-Blankenburg K, Clifford K, Cobley V, Cole CG, Conquer JS, Corby N, Connor RE, David R, Davies J, Davis C, Davis J, Delgado O, Deshazo D et al (2005) The DNA sequence of the human X chromosome. Nature 434:325–337

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC (2003) Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–876

    Article  PubMed  CAS  Google Scholar 

  • Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3:65–72

    Article  PubMed  CAS  Google Scholar 

  • The Chimpanzee Sequencing Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  CAS  Google Scholar 

  • Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G (2004) Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res 14:1861–1869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nils Rademacher for critical review and Arthur O’Connor for proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian O. Losch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 0.97 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losch, F.O., Bredenbeck, A., Hollstein, V.M. et al. Evidence for a large double-cruciform DNA structure on the X chromosome of human and chimpanzee. Hum Genet 122, 337–343 (2007). https://doi.org/10.1007/s00439-007-0405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-007-0405-4

Keywords

Navigation