Human Genetics

, Volume 121, Issue 2, pp 243–256 | Cite as

Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels

  • Ana M. Coutinho
  • Inês Sousa
  • Madalena Martins
  • Catarina Correia
  • Teresa Morgadinho
  • Celeste Bento
  • Carla Marques
  • Assunção Ataíde
  • Teresa S. Miguel
  • Jason H. Moore
  • Guiomar Oliveira
  • Astrid M. Vicente
Original Investigation

Abstract

Autism is a neurodevelopmental disorder of unclear etiology. The consistent finding of platelet hyperserotonemia in a proportion of patients and its heritability within affected families suggest that genes involved in the serotonin system play a role in this disorder. The role in autism etiology of seven candidate genes in the serotonin metabolic and neurotransmission pathways and mapping to autism linkage regions (SLC6A4, HTR1A, HTR1D, HTR2A, HTR5A, TPH1 and ITGB3) was analyzed in a sample of 186 nuclear families. The impact of interactions among these genes in autism was assessed using the multifactor-dimensionality reduction (MDR) method in 186 patients and 181 controls. We further evaluated whether the effect of specific gene variants or gene interactions associated with autism etiology might be mediated by their influence on serotonin levels, using the quantitative transmission disequilibrium test (QTDT) and the restricted partition method (RPM), in a sample of 109 autistic children. We report a significant main effect of the HTR5A gene in autism (= 0.0088), and a significant three-locus model comprising a synergistic interaction between the ITGB3 and SLC6A4 genes with an additive effect of HTR5A (P < 0.0010). In addition to the previously reported contribution of SLC6A4, we found significant associations of ITGB3 haplotypes with serotonin level distribution (P = 0.0163). The most significant models contributing to serotonin distribution were found for interactions between TPH1 rs4537731 and SLC6A4 haplotypes (P = 0.002) and between HTR1D rs6300 and SLC6A4 haplotypes (P = 0.013). In addition to the significant independent effects, evidence for interaction between SLC6A4 and ITGB3 markers was also found. The overall results implicate SLC6A4 and ITGB3 gene interactions in autism etiology and in serotonin level determination, providing evidence for a common underlying genetic mechanism and a molecular explanation for the association of platelet hyperserotonemia with autism.

Supplementary material

439_2006_301_MOESM1_ESM.doc (420 kb)
Supplementary Table S1 Polymorphisms studied and respective reference or primer sequences used for amplification (DOC 420 kb)

References

  1. Abecasis GR, Cardon LR, Cookson WO (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292PubMedCrossRefGoogle Scholar
  2. Abney M, McPeek MS, Ober C (2001) Broad and narrow heritabilities of quantitative traits in a founder population. Am J Hum Genet 68:1302–1307PubMedCrossRefGoogle Scholar
  3. Alarcón M, Cantor RM, Liu J, Gilliam TC, Geschwind DH (2002) Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet 70:60–71PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders—fourth edition (DSM-IV). American Psychiatric Association, Washington DCGoogle Scholar
  5. Auranen M, Vanhala R, Varilo T, Ayers K, Kempas E, Ylisaukko-Oja T, Sinsheimer JS, Peltonen L, Jarvela I (2002) A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25–27. Am J Hum Genet 71:777–790PubMedCrossRefGoogle Scholar
  6. Barrett S, Beck JC, Bernier R, Bisson E, Braun TA, Casavant TL, Childress D, Folstein SE, Garcia M, Gardiner MB, Gilman S, Haines JL, Hopkins K, Landa R, Meyer NH, Mullane JA, Nishimura DY, Palmer P, Piven J, Purdy J, Santangelo SL, Searby C, Sheffield V, Singleton J, Slager S et al (1999) An autosomal genomic screen for autism. Collaborative linkage study of autism. Am J Med Genet 88:609–615PubMedCrossRefGoogle Scholar
  7. Bradford Y, Haines J, Hutcheson H, Gardiner M, Braun T, Sheffield V, Cassavant T, Huang W, Wang K, Vieland V, Folstein S, Santangelo S, Piven J (2001) Incorporating language phenotypes strengthens evidence of linkage to autism. Am J Med Genet 105:539–547PubMedCrossRefGoogle Scholar
  8. Cantor RM, Kono N, Duvall JA, Alvarez-Retuerto A, Stone JL, Alarcón M, Nelson SF, Geschwind DH (2005) Replication of autism linkage: fine-mapping peak at 17q21. Am J Hum Genet 76:1050–1056PubMedCrossRefGoogle Scholar
  9. Clayton D (1999) A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 65:1170–1177PubMedCrossRefGoogle Scholar
  10. Coffey CS, Hebert PR, Ritchie MD, Krumholz HM, Gaziano JM, Ridker PM, Brown NJ, Vaughan DE, Moore JH (2004) An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene–gene interactions on risk of myocardial infarction: the importance of model validation. BMC Bioinformatics 5:49PubMedCrossRefGoogle Scholar
  11. Cook EH Jr, Arora RC, Anderson GM, Berry-Kravis EM, Yan SY, Yeoh HC, Sklena PJ, Charak DA, Leventhal BL (1993) Platelet serotonin studies in hyperserotonemic relatives of children with autistic disorder. Life Sci 52:2005–2015PubMedCrossRefGoogle Scholar
  12. Coutinho AM, Oliveira G, Morgadinho T, Fesel C, Macedo TR, Bento C, Marques C, Ataíde A, Miguel T, Borges L, Vicente AM (2004) Variants of the serotonin transporter gene (SLC6A4) significantly contribute to hyperserotonemia in autism. Mol Psychiatry 9:264–271PubMedCrossRefGoogle Scholar
  13. Culverhouse R, Klein T, Shannon W (2004) Detecting epistatic interactions contributing to quantitative traits. Genet Epidemiol 27:141–152PubMedCrossRefGoogle Scholar
  14. Devlin B, Cook EH Jr, Coon H, Dawson G, Grigorenko EL, McMahon W, Minshew N, Pauls D, Smith M, Spence MA, Rodier PM, Stodgell C, Schellenberg GD (2005) Autism and the serotonin transporter: the long and short of it. Mol Psychiatry 10:1110–1116PubMedCrossRefGoogle Scholar
  15. Feise RJ (2002) Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol 2:8PubMedCrossRefGoogle Scholar
  16. Good P (2000) Permutation tests. Springer, Berlin, Heidelberg New YorkGoogle Scholar
  17. Grailhe R, Waeber C, Dulawa SC, Hornung JP, Zhuang X, Brunner D, Geyer MA, Hen R (1999) Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Neuron 22:581–591PubMedCrossRefGoogle Scholar
  18. Greenberg BD, Tolliver TJ, Huang SJ, Li Q, Bengel D, Murphy DL (1999) Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am J Med Genet 88:83–87PubMedCrossRefGoogle Scholar
  19. Griffiths R (1984) The abilities of young children. University of London Press, LondonGoogle Scholar
  20. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. Janusonis S (2005) Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities. Theor Biol Med Model 2:27PubMedCrossRefGoogle Scholar
  22. Lahiri DK, Nurnberger JI Jr (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19:5444PubMedCrossRefGoogle Scholar
  23. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531PubMedCrossRefGoogle Scholar
  24. Lord C, Rutter M, Le Couteur A (1994) Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685PubMedCrossRefGoogle Scholar
  25. Lord C, Cook EH, Leventhal BL, Amaral DG (2000) Autism spectrum disorders. Neuron 28:355–363PubMedCrossRefGoogle Scholar
  26. McBride PA, Anderson GM, Hertzig ME, Sweeney JA, Kream J, Cohen DJ, Mann JJ (1989) Serotonergic responsivity in male young adults with autistic disorder. Results of a pilot study. Arch Gen Psychiatry 46:213–221PubMedGoogle Scholar
  27. Meltzer HY, Arora RC (1988) Genetic control of serotonin uptake in blood platelets: a twin study. Psychiatry Res 24:263–269PubMedCrossRefGoogle Scholar
  28. Moore JH (2003a) In: Raidl G et al (eds) Lecture notes in computer science, vol 2611. Springer, Berlin Heidelberg New York, pp 99–106Google Scholar
  29. Moore JH (2003b) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56:73–82CrossRefGoogle Scholar
  30. Moore JH (2004) Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn 4:795–803PubMedCrossRefGoogle Scholar
  31. Moore JH (2005) A global view of epistasis. Nat Genet 37:13–14PubMedCrossRefGoogle Scholar
  32. Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241:252–261PubMedCrossRefGoogle Scholar
  33. Oatway MA, Chen Y, Bruce JC, Dekaban GA, Weaver LC (2005) Anti-CD11d integrin antibody treatment restores normal serotonergic projections to the dorsal, intermediate, and ventral horns of the injured spinal cord. J Neurosci 25:637–647PubMedCrossRefGoogle Scholar
  34. Ober C, Abney M, McPeek MS (2001) The genetic dissection of complex traits in a founder population. Am J Hum Genet 69:1068–1079PubMedCrossRefGoogle Scholar
  35. Rees S, den Daas I, Foord S, Goodson S, Bull D, Kilpatrick G, Lee M (1994) Cloning and characterisation of the human 5-HT5A serotonin receptor. FEBS Lett 355:242–246PubMedCrossRefGoogle Scholar
  36. Richdale AL, Prior MR (1995) The sleep/wake rhythm in children with autism. Eur Child Adolesc Psychiatry 4:175–186PubMedCrossRefGoogle Scholar
  37. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147PubMedCrossRefGoogle Scholar
  38. Sajid M, Vijayan KV, Souza S, Bray PF (2002) PlA polymorphism of integrin beta 3 differentially modulates cellular migration on extracellular matrix proteins. Arterioscler Thromb Vasc Biol 22:1984–1989PubMedCrossRefGoogle Scholar
  39. Schopler E, Reichler RJ, Renner BR (1988) The childhood autism rating scale (CARS). Western Psychological Services, Los AngelesGoogle Scholar
  40. Sham PC, Curtis D (1995) An extended transmission/disequilibrium test (TDT) for multi-allele marker loci. Ann Hum Genet 59:323–336PubMedGoogle Scholar
  41. Sprouse J, Reynolds L, Braselton J, Schmidt A (2004) Serotonin-induced phase advances of SCN neuronal firing in vitro: a possible role for 5-HT5A receptors? Synapse 54:111–118PubMedCrossRefGoogle Scholar
  42. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefGoogle Scholar
  43. Stone JL, Merriman B, Cantor RM, Yonan AL, Gilliam TC, Geschwind DH, Nelson SF (2004) Evidence for sex-specific risk alleles in autism spectrum disorder. Am J Hum Genet 75:1117–1123PubMedCrossRefGoogle Scholar
  44. Sun HS, Fann CS, Lane HY, Chang YT, Chang CJ, Liu YL, Cheng AT (2005) A functional polymorphism in the promoter region of the tryptophan hydroxylase gene is associated with alcohol dependence in one aboriginal group in Taiwan. Alcohol Clin Exp Res 29:1–7PubMedCrossRefGoogle Scholar
  45. Sutcliffe JS, Delahanty RJ, Prasad HC, McCauley JL, Han Q, Jiang L, Li C, Folstein SE, Blakely RD (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet 77:265–279PubMedCrossRefGoogle Scholar
  46. Thornton-Wells TA, Moore JH, Haines JL (2004) Genetics, statistics and human disease: analytical retooling for complexity. Trends Genet 20:640–647PubMedCrossRefGoogle Scholar
  47. Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, Moore JH (2006) A balanced accuracy metric for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol (in press)Google Scholar
  48. Vijayan KV, Liu Y, Sun W, Ito M, Bray PF (2005) The Pro33 isoform of integrin beta3 enhances outside-in signaling in human platelets by regulating the activation of serine/threonine phosphatases. J Biol Chem 280:21756–21762PubMedCrossRefGoogle Scholar
  49. Weiss LA, Veenstra-Vanderweele J, Newman DL, Kim SJ, Dytch H, McPeek MS, Cheng S, Ober C, Cook EH Jr, Abney M (2004) Genome-wide association study identifies ITGB3 as a QTL for whole blood serotonin. Eur J Hum Genet 12:949–954PubMedCrossRefGoogle Scholar
  50. Weiss LA, Abney M, Cook EH Jr, Ober C (2005a) Sex-specific genetic architecture of whole blood serotonin levels. Am J Hum Genet 76:33–41CrossRefGoogle Scholar
  51. Weiss LA, Abney M, Parry R, Scanu AM, Cook EH Jr, Ober C (2005b) Variation in ITGB3 has sex-specific associations with plasma lipoprotein(a) and whole blood serotonin levels in a population-based sample. Hum Genet 117:81–87CrossRefGoogle Scholar
  52. Weiss LA, Kosova G, Delahanty RJ, Jiang L, Cook EH Jr, Ober C, Sutcliffe JS (2006a) Variation in ITGB3 is associated with whole-blood serotonin level and autism susceptibility. Eur J Hum Genet 14:923–931CrossRefGoogle Scholar
  53. Weiss LA, Ober C, Cook EH Jr (2006b) ITGB3 shows genetic and expression interaction with SLC6A4. Hum Genet 120:93–100CrossRefGoogle Scholar
  54. Whitaker-Azmitia PM (2005) Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism? Int J Dev Neurosci 23:75–83PubMedCrossRefGoogle Scholar
  55. Zill P, Buttner A, Eisenmenger W, Moller HJ, Ackenheil M, Bondy B (2005) Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: A post-mortem study. J Psychiatr Res doi:10.1016/j.jpsychires.2005.05.004Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ana M. Coutinho
    • 1
  • Inês Sousa
    • 1
  • Madalena Martins
    • 1
    • 2
  • Catarina Correia
    • 1
    • 2
  • Teresa Morgadinho
    • 3
  • Celeste Bento
    • 4
  • Carla Marques
    • 4
  • Assunção Ataíde
    • 5
  • Teresa S. Miguel
    • 5
  • Jason H. Moore
    • 6
  • Guiomar Oliveira
    • 4
  • Astrid M. Vicente
    • 1
    • 2
  1. 1.Instituto Gulbenkian de CiênciaOeirasPortugal
  2. 2.Instituto Nacional de Saúde Dr. Ricardo JorgeLisbonPortugal
  3. 3.Departamento de FarmacologiaFaculdade de Medicina da Universidade de CoimbraCoimbraPortugal
  4. 4.Hospital Pediátrico de CoimbraCoimbraPortugal
  5. 5.Direcção Regional de Educação da Região CentroCoimbraPortugal
  6. 6.Computational Genetics Laboratory, Department of GeneticsDartmouth Medical SchoolLebanonUSA

Personalised recommendations