Skip to main content
Log in

Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The human and chimpanzee genomes are distinguishable in terms of ten gross karyotypic differences including nine pericentric inversions and a chromosomal fusion. Seven of these large pericentric inversions are chimpanzee-specific whereas two of them, involving human chromosomes 1 and 18, were fixed in the human lineage after the divergence of humans and chimpanzees. We have performed detailed molecular and computational characterization of the breakpoint regions of the human-specific inversion of chromosome 1. FISH analysis and sequence comparisons together revealed that the pericentromeric region of HSA 1 contains numerous segmental duplications that display a high degree of sequence similarity between both chromosomal arms. Detailed analysis of these regions has allowed us to refine the p-arm breakpoint region to a 154.2 kb interval at 1p11.2 and the q-arm breakpoint region to a 562.6 kb interval at 1q21.1. Both breakpoint regions contain human-specific segmental duplications arranged in inverted orientation. We therefore propose that the pericentric inversion of HSA 1 was mediated by intra-chromosomal non-homologous recombination between these highly homologous segmental duplications that had themselves arisen only recently in the human lineage by duplicative transposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE (2001) Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 11:1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE (2002) Recent segmental duplications in the human genome. Science 297:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Barbi G, Spaich Ch, Adolph S, Rossier E, Kehrer-Sawatzki H (2005) Supernumerary der(1) marker chromosome derived from a ring chromosome 1 which has retained the original centromere and euchromatin from 1q21.1→q21.3 with substantial loss of 1q12 heterochromatin in a female with dysmorphic features and psychomotoric developmental delay. Am J Med Genet A 132:419–424

    PubMed  CAS  Google Scholar 

  • Buckland RA (1992) A primate transfer RNA gene cluster and the evolution of human chromosome 1. Cytogenet Cell Genet 61:1–4

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Ventura M, She X, Khaitovich P, Graves T, Osoegawa K, Church D, DeJong P, Wilson RK, Pääbo S, Rocchi M, Eichler EE (2005) Genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437:88–93

    Article  PubMed  CAS  Google Scholar 

  • Cheung J, Estivill X, Khaja R, MacDonald JR, Lau K, Tsui LC, Scherer SW (2003) Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biol 4:R25

    Article  PubMed  Google Scholar 

  • Choudhuri JV, Schleiermacher C, Kurtz S, Giegerich R (2004) GenAlyzer: interactive visualization of sequence similarities between entire genomes. Bioinformatics 20:1964–1965

    Article  PubMed  CAS  Google Scholar 

  • Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK (2006) A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 38:75–81

    Article  PubMed  CAS  Google Scholar 

  • Dennehey BK, Gutches DG, McConkey EH, Krauter KS (2004) Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution. Genomics 83:493–501

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48:251–314

    Article  PubMed  CAS  Google Scholar 

  • Faas BH, Mieloo H, Van Es-Van Gaal JW, Van Ravenswaaij C (2003) A new case of dup(1)(q21.2q12) in an individual with mild mental retardation. Genet Couns 14:407–411

    PubMed  CAS  Google Scholar 

  • Fan Y, Linardopoulou E, Friedman C, Williams E, Trask BJ (2002) Genomic structure and evolution of the ancestral chromosome fusion site in 2q13–2q14.1 and paralogous regions on other human chromosomes. Genome Res 12:1651–1662

    Article  PubMed  CAS  Google Scholar 

  • Fortna A, Kim Y, MacLaren E, Marshall K, Hahn G, Meltesen L, Brenton M, Hink R, Burgers S, Hernandez-Boussard T, Karimpour-Fard A, Glueck D, McGavran L, Berry R, Pollack J, Sikela JM (2004) Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol 2:E207

    Article  PubMed  Google Scholar 

  • Goidts V, Szamalek JM, Hameister H, Kehrer-Sawatzki H (2004) Segmental duplication associated with the human-specific inversion of chromosome 18: a further example of the impact of segmental duplications on karyotype and genome evolution in primates. Hum Genet 115:116–122

    Article  PubMed  CAS  Google Scholar 

  • Goidts V, Szamalek JM, de Jong PJ, Cooper DN, Chuzhanova N, Hameister H, Kehrer-Sawatzki H (2005) Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. Genome Res 15:1232–1242

    Article  PubMed  CAS  Google Scholar 

  • Goidts V, Armengol L, Schempp W, Conroy J, Nowak N, Muller S, Cooper DN, Estivill X, Enard W, Szamalek JM, Hameister H, Kehrer-Sawatzki H (2006) Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization. Hum Genet 119:185–198

    Article  PubMed  CAS  Google Scholar 

  • Gross M, Starke H, Trifonov V, Claussen U, Liehr T, Weise A (2006) A molecular cytogenetic study of chromosome evolution in chimpanzee. Cytogenet Genome Res 112:67–75

    Article  PubMed  CAS  Google Scholar 

  • Haig D (2005) The complex history of distal human chromosome 1q. Genomics 86:767–770

    Article  PubMed  CAS  Google Scholar 

  • Horvath JE, Schwartz S, Eichler EE (2000) The mosaic structure of human pericentromeric DNA: a strategy for characterizing complex regions of the human genome. Genome Res 10:839–852

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Schreiner B, Tanzer S, Platzer M, Muller S, Hameister H (2002) Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. Am J Hum Genet 71:375–388

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Sandig C, Chuzhanova N, Goidts V, Szamalek JM, Tanzer S, Muller S, Platzer M, Cooper DN, Hameister H (2005a) Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes). Hum Mutat 25:45–55

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Sandig CA, Goidts V, Hameister H (2005b) Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Cytogenet Genome Res 108:91–97

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Szamalek JM, Tanzer S, Platzer M, Hameister H (2005c) Molecular characterization of the pericentric inversion of chimpanzee chromosome 11 homologous to human chromosome 9. Genomics 85:542–550

    Article  PubMed  CAS  Google Scholar 

  • Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437:94–100

    Article  PubMed  CAS  Google Scholar 

  • Locke DP, Archidiacono N, Misceo D, Cardone MF, Deschamps S, Roe B, Rocchi M, Eichler EE (2003) Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol 4:R50

    Article  PubMed  Google Scholar 

  • Martin CL, Wong A, Gross A, Chung J, Fantes JA, Ledbetter DH (2002) The evolutionary origin of human subtelomeric homologies—or where the ends begin. Am J Hum Genet 70:972–984

    Article  PubMed  CAS  Google Scholar 

  • Maresco DL, Blue LE, Culley LL, Kimberly RP, Anderson CL, Theil KS (1998) Localization of FCGR1 encoding Fcgamma receptor class I in primates: molecular evidence for two pericentric inversions during the evolution of human chromosome 1. Cytogenet Cell Genet 82:71–74

    Article  PubMed  CAS  Google Scholar 

  • Marzella R, Viggiano L, Miolla V, Storlazzi CT, Ricco A, Gentile E, Roberto R, Surace C, Fratello A, Mancini M, Archidiacono N, Rocchi M (2000) Molecular cytogenetic resources for chromosome 4 and comparative analysis of phylogenetic chromosome IV in great apes. Genomics 63:307–313

    Article  PubMed  CAS  Google Scholar 

  • McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, Dallaire S, Gabriel SB, Lee C, Daly MJ, Altshuler DM, International HapMap Consortium (2005) Common deletion polymorphisms in the human genome. Nat Genet 38:86–92

    Article  CAS  Google Scholar 

  • McConkey EH (1997) The origin of human chromosome 18 from a human/ape ancestor. Cytogenet Cell Genet 76:189–191

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Jaffe DB, Yang S-P, Enard W, Hellmann I, Lindblad-Toh K, Altheide TK, Archidiacono N, Bork P, Butler J, Chang JL, Cheng Z, Chinwalla AT, deJong P, Delehaunty KD, Fronick CC, Fulton LL, Gilad Y, Glusman G, Gnerre S, Graves TA, Hayakawa T, Hayden KE, Huang X, Ji H, Kent WJ, King M-C, Kulbokas EJ, Lee MK, Liu G, Lopez-Otin C, Makova KD, Man O, Mardis ER, Mauceli E, Miner TL, Nash WE, Nelson JO, Pääbo S, Patterson NJ, Poh CS, Pollard KS, Prüfer K, Puente XS, Reich D, Rocchi M, Rosenbloom K, Ruvolo M, Richter DJ, Schaffner SF, Smit AFA, Smith SM, Suyama M, Taylor J, Torrents D, Tuzun E, Varki A, Velasco G, Ventura M, Wallis JW, Wend MC, Wilson RK, Lander ES, Waterston RJ (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  CAS  Google Scholar 

  • Mitelman F, Johansson B and Mertens F (2006) Mitelman Database of Chromosome Aberrations in Cancer. http://www.cgap.nci.nih.gov/Chromosomes/Mitelman

  • Monfouilloux S, Avet-Loiseau H, Amarger V, Balazs I, Pourcel C, Vergnaud G (1998) Recent human-specific spreading of a subtelomeric domain. Genomics 51:165–176

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Wienberg J (2001) “Bar-coding” primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype. Hum Genet 109:85–94

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Fronicke L, O’Brien SJ, Stanyon R (2003) The origin of human chromosome 1 and its homologs in placental mammals. Genome Res 13:1880–1888

    PubMed  CAS  Google Scholar 

  • Newman TL, Tuzun E, Morrison VA, Hayden KE, Ventura M, McGrath SD, Rocchi M, Eichler EE (2005) A genome-wide survey of structural variation between human and chimpanzee. Genome Res 15:1344–1356

    Article  PubMed  CAS  Google Scholar 

  • Nickerson E, Nelson DL (1998) Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Genomics 50:368–372

    Article  PubMed  CAS  Google Scholar 

  • Parsons JD (1995) Miropeats: graphical DNA sequence comparisons. Comput Appl Biosci. 11:615–619

    PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A, Garcia F, Azzalin C, Giulotto E, Egozcue J, Ponsa M, Garcia M (2002) Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution. Hum Genet 110:578–586

    Article  PubMed  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M (2004) Large-scale copy number polymorphism in the human genome. Science 305:525–528

    Article  PubMed  CAS  Google Scholar 

  • She X, Jiang Z, Clark RA, Liu G, Cheng Z, Tuzun E, Church DM, Sutton G, Halpern AL, Eichler EE (2004) Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431:927–930

    Article  PubMed  CAS  Google Scholar 

  • Shimada MK, Kim CG, Kitano T, Ferrell RE, Kohara Y, Saitou N (2005) Nucleotide sequence comparison of a chromosome rearrangement on human chromosome 12 and the corresponding ape chromosomes. Cytogenet Genome Res 108:83–90

    Article  PubMed  CAS  Google Scholar 

  • Szamalek JM, Goidts V, Chuzhanova N, Hameister H, Cooper DN, Kehrer-Sawatzki H (2005) Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome. Hum Genet 117:168–176

    Article  PubMed  CAS  Google Scholar 

  • Szamalek JM, Goidts V, Searle JB, Cooper DN, Hameister H, Kehrer-Sawatzki H (2006a) The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscus. Genomics 87:39–45

    Article  PubMed  CAS  Google Scholar 

  • Szamalek JM, Cooper DN, Schempp W, Minich P, Kohn M, Hoegel J, Goidts V, Hameister H, Kehrer-Sawatzki H (2006b) Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees. Hum Genet 119:103–112

    Article  PubMed  CAS  Google Scholar 

  • Trask BJ, Friedman C, Martin-Gallardo A, Rowen L, Akinbami C, Blankenship J, Collins C, Giorgi D, Iadonato S, Johnson F, Kuo WL, Massa H, Morrish T, Naylor S, Nguyen OT, Rouquier S, Smith T, Wong DJ, Youngblom J, van den Engh G (1998) Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum Mol Genet 7:13-26

    Article  PubMed  CAS  Google Scholar 

  • Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE (2005) Fine-scale structural variation of the human genome. Nat Genet 37:727–732

    Article  PubMed  CAS  Google Scholar 

  • Weise A, Starke H, Mrasek K, Claussen U, Liehr T (2005) New insights into the evolution of chromosome 1. Cytogenet Genome Res 108:217–222

    Article  PubMed  CAS  Google Scholar 

  • White PS, Matise TC (2003) Chromosome 1. In: Cooper DN (ed) Nature encyclopedia of the human genome, vol 1. Nature Publishing Group, London, pp 550–559

  • Wilson GM, Flibotte S, Missirlis PI, Marra MA, Jones S, Thornton K, Clark AG, Holt RA (2006) Identification by full-coverage array CGH of human DNA copy number increases relative to chimpanzee and gorilla. Genome Res 16:173–181

    Article  PubMed  CAS  Google Scholar 

  • Won YJ, Hey J (2005) Divergence population genetics of chimpanzees. Mol Biol Evol 22:297–307

    Article  PubMed  CAS  Google Scholar 

  • Yoder AD, Yang Z (2000) Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17:1081–1090

    PubMed  CAS  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was funded by the Deutsche Forschungsgemeinschaft (DFG KE 724/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hildegard Kehrer-Sawatzki.

Additional information

Justyna M. Szamalek and Violaine Goidts are contributed equally to the paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szamalek, J.M., Goidts, V., Cooper, D.N. et al. Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes. Hum Genet 120, 126–138 (2006). https://doi.org/10.1007/s00439-006-0209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0209-y

Keywords

Navigation