Skip to main content
Log in

Genetic linkage of human height is confirmed to 9q22 and Xq24

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Human height is an important and heritable trait. Our previous two genome-wide linkage studies using 630 (WG1 study) and an extended sample of 1,816 Caucasians (WG2 study) identified 9q22 [maximum LOD score (MLS)=2.74 in the WG2 study] and preliminarily confirmed Xq24 (two-point LOD score=1.91 in the WG1 study, 2.64 in the WG2 study) linked to height. Here, with a much further extended large sample containing 3,726 Caucasians, we performed a new genome-wide linkage scan and confirmed, in high significance, the two regions’ linkage to height. An MLS of 4.34 was detected on 9q22 and a two-point LOD score of 5.63 was attained for Xq24. In an independent sub-sample (i.e., the subjects not involved in the WG1 and WG2 studies), the two regions also achieved significant empirical P values (0.002 and 0.004, respectively) for “region-wise” linkage confirmation. Importantly, the two regions were replicated on a genotyping platform different from the WG1 and WG2 studies (i.e., a different set of markers and different genotyping instruments). Interestingly, 9q22 harbors the ROR2 gene, which is required for growth plate development, and Xq24 was linked to short stature. With the largest sample from a single population of the same ethnicity in the field of linkage studies for complex traits, our current study, together with two previous ones, provided overwhelming evidence substantiating 9q22 and Xq24 for height variation. In particular, our three consecutive whole genome studies are uniquely valuable as they represent the first practical (rather than simulated) example of how significant increase in sample size may improve linkage detection for human complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afzal AR, Jeffery S (2003) One gene, two phenotypes: ROR2 mutations in autosomal recessive Robinow syndrome and autosomal dominant brachydactyly type B. Hum Mutat 22:1–11

    Article  PubMed  CAS  Google Scholar 

  • Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, Tuysuz B, Murday VA, Patton MA, Wilkie AO et al (2000) Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet 25:419–422

    Article  PubMed  CAS  Google Scholar 

  • Allison DB, Neale MC, Zannolli R, Schork NJ, Amos CI, Blangero J (1999) Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. Am J Hum Genet 65:531–544

    Article  PubMed  CAS  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  CAS  Google Scholar 

  • Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 54:535–543

    PubMed  CAS  Google Scholar 

  • Amos CI, Zhu DK, Boerwinkle E (1996) Assessing genetic linkage and association with robust components of variance approaches. Ann Hum Genet 60(Pt 2):143–160

    Article  PubMed  CAS  Google Scholar 

  • Beck SR, Brown WM, Williams AH, Pierce J, Rich SS, Langefeld CD (2003) Age-stratified QTL genome scan analyses for anthropometric measures. BMC Genet 4(Suppl 1):S31

    Article  PubMed  Google Scholar 

  • Cabezas DA, Slaugh R, Abidi F, Arena JF, Stevenson RE, Schwartz CE, Lubs HA (2000) A new X linked mental retardation (XLMR) syndrome with short stature, small testes, muscle wasting, and tremor localises to Xq24-q25. J Med Genet 37:658–662

    Article  Google Scholar 

  • Carmichael CM, McGue M (1995) A cross-sectional examination of height, weight, and body mass index in adult twins. J Gerontol A Biol Sci Med Sci 50:B237–B244

    PubMed  CAS  Google Scholar 

  • DeChiara TM, Kimble RB, Poueymirou WT, Rojas J, Masiakowski P, Valenzuela DM, Yancopoulos GD (2000) Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet 24:271–274

    Article  PubMed  CAS  Google Scholar 

  • Deng HW, Xu FH, Liu YZ, Shen H, Deng H, Huang QY, Liu YJ, Conway T, Li JL, Davies KM et al (2002) A whole-genome linkage scan suggests several genomic regions potentially containing QTLs underlying the variation of stature. Am J Med Genet 113:29–39

    Article  PubMed  Google Scholar 

  • Garnero P, Borel O, Grant SF, Ralston SH, Delmas PD (1998) Collagen Ialpha1 Sp1 polymorphism, bone mass, and bone turnover in healthy French premenopausal women: the OFELY study. J Bone Miner Res 13:813–817

    Article  PubMed  CAS  Google Scholar 

  • Geller F, Dempfle A, Gorg T (2003) Genome scan for body mass index and height in the Framingham Heart Study. BMC Genet 4(Suppl 1):S91

    Article  PubMed  Google Scholar 

  • Ginsburg E, Livshits G, Yakovenko K, Kobyliansky E (1998) Major gene control of human body height, weight and BMI in five ethnically different populations. Ann Hum Genet 62(Pt 4):307–322

    Article  PubMed  CAS  Google Scholar 

  • Hamel BC, Smits AP, Otten BJ, van den Helm B, Ropers HH, Mariman EC (1996) Familial X-linked mental retardation and isolated growth hormone deficiency: clinical and molecular findings. Am J Med Genet 64:35–41

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa Y, Fujii K, Yamada M, Igarashi Y, Tachibana K, Tanaka T, Onigata K, Nishi Y, Kato S, Hasegawa T (2000) Identification of novel human GH-1 gene polymorphisms that are associated with growth hormone secretion and height. J Clin Endocrinol Metab 85:1290–1295

    Article  PubMed  CAS  Google Scholar 

  • Hirschhorn JN, Lindgren CM, Daly MJ, Kirby A, Schaffner SF, Burtt NP, Altshuler D, Parker A, Rioux JD, Platko J et al (2001) Genomewide linkage analysis of stature in multiple populations reveals several regions with evidence of linkage to adult height. Am J Hum Genet 69:106–116

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Deng H, Lai DB, Xu F, Chen J, Gao G, Recker RR, Deng HW (2001) Toward high-throughput genotyping: dynamic and automatic software for manipulating large-scale genotype data using fluorescently labeled dinucleotide markers. Genome Res 11:1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Li MX, Liu PY, Li YM, Qin YJ, Liu YZ, Deng HW (2004) A major gene model of adult height is suggested in Chinese. J Hum Genet 49:148–153

    Article  PubMed  Google Scholar 

  • Liu YZ, Xu FH, Shen H, Liu YJ, Zhao LJ, Long JR, Zhang YY, Xiao P, Xiong DH, Dvornyk V et al (2004) Genetic dissection of human stature in a large sample of multiplex pedigrees. Ann Hum Genet 68:472–488

    Article  PubMed  CAS  Google Scholar 

  • Luo ZC, Albertsson-Wikland K, Karlberg J (1998) Target height as predicted by parental heights in a population-based study. Pediatr Res 44:563–571

    Article  PubMed  CAS  Google Scholar 

  • O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266

    Article  PubMed  CAS  Google Scholar 

  • Perola M, Ohman M, Hiekkalinna T, Leppavuori J, Pajukanta P, Wessman M, Koskenvuo M, Palotie A, Lange K, Kaprio J et al (2001) Quantitative-trait-locus analysis of body-mass index and of stature, by combined analysis of genome scans of five Finnish study groups. Am J Hum Genet 69:117–123

    Article  PubMed  CAS  Google Scholar 

  • Phillips K, Matheny AP Jr (1990) Quantitative genetic analysis of longitudinal trends in height: preliminary results from the Louisville Twin Study. Acta Genet Med Gemellol (Roma) 39:143–163

    CAS  Google Scholar 

  • Raynaud M, Ronce N, Ayrault AD, Francannet C, Malpuech G, Moraine C (1998) X-linked mental retardation with isolated growth hormone deficiency is mapped to Xq22-Xq27.2 in one family. Am J Med Genet 76:255–261

    Article  PubMed  CAS  Google Scholar 

  • Sammalisto SA, Hiekkalinna T, Suviolahti E, Sood K, Metzidis A, Pajukanta P, Lilja HE, Soro-Paavonen A, Taskinen MR, Tuomi T et al (2005) A male-specific QTL on 1p21 controlling human stature. J Med Genet 42(12):932–939

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Liu Y, Liu P, Recker RR, Deng HW (2005) Nonreplication in genetic studies of complex diseases—lessons learned from studies of osteoporosis and tentative remedies. J Bone Miner Res 20:365–376

    Article  PubMed  CAS  Google Scholar 

  • Smith C (1961) Testing for heterogeneity of recombination fraction values in human genetics. Ann Hum Genet 27:175–182

    Article  Google Scholar 

  • Statistical analysis for genetic epidemiology, Release 5.0. (2005) Computer program package available from the Department of Epidemiology and Biostatistics, Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland

  • Vitale E, Specchia C, Devoto M, Angius A, Rong S, Rocchi M, Schwalb M, Demelas L, Paglietti D, Manca S et al (2001) Novel X-linked mental retardation syndrome with short stature maps to Xq24. Am J Med Genet 103:1–8

    Article  PubMed  CAS  Google Scholar 

  • Whittemore AS, Halpern J (2001) Problems in the definition, interpretation, and evaluation of genetic heterogeneity. Am J Hum Genet 68:457–465

    Article  PubMed  CAS  Google Scholar 

  • Willemsen G, Boomsma DI, Beem AL, Vink JM, Slagboom PE, Posthuma D (2004) QTLs for height: results of a full genome scan in Dutch sibling pairs. Eur J Hum Genet 12:820–828

    Article  PubMed  CAS  Google Scholar 

  • Wiltshire S, Frayling TM, Hattersley AT, Hitman GA, Walker M, Levy JC, O’Rahilly S, Groves CJ, Menzel S, Cardon LR et al (2002) Evidence for linkage of stature to chromosome 3p26 in a large U.K. family data set ascertained for type 2 diabetes. Am J Hum Genet 70:543–546

    Article  PubMed  Google Scholar 

  • Wu X, Cooper RS, Boerwinkle E, Turner ST, Hunt S, Myers R, Olshen RA, Curb D, Zhu X, Kan D et al (2003) Combined analysis of genomewide scans for adult height: results from the NHLBI Family Blood Pressure Program. Eur J Hum Genet 11:271–274

    Article  PubMed  Google Scholar 

  • Xu J, Bleecker ER, Jongepier H, Howard TD, Koppelman GH, Postma DS, Meyers DA (2002) Major recessive gene(s) with considerable residual polygenic effect regulating adult height: confirmation of genomewide scan results for chromosomes 6, 9, and 12. Am J Hum Genet 71:646–650

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Investigators of this work were partially supported by grants from NIH (K01 AR02170-01, R01 AR45349-01, R01 GM60402-01A1) and an LB595 grant from the State of Nebraska. The study also benefited due to grants from National Science Foundation of China, Huo Ying Dong Education Foundation, HuNan Province, Xi’an Jiaotong University, and the Ministry of Education of China. The genotyping experiment was performed by Marshfield Center for Medical Genetics and supported by NHLBI Mammalian Genotyping Service (Contract Number HV48141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wen Deng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YZ., Xiao, P., Guo, Yf. et al. Genetic linkage of human height is confirmed to 9q22 and Xq24 . Hum Genet 119, 295–304 (2006). https://doi.org/10.1007/s00439-006-0136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0136-y

Keywords

Navigation