Human Genetics

, Volume 116, Issue 5, pp 331–339 | Cite as

Genes and human elite athletic performance

Review Article

Abstract

Physical fitness is a complex phenotype influenced by a myriad of environmental and genetic factors, and variation in human physical performance and athletic ability has long been recognised as having a strong heritable component. Recently, the development of technology for rapid DNA sequencing and genotyping has allowed the identification of some of the individual genetic variations that contribute to athletic performance. This review will examine the evidence that has accumulated over the last three decades for a strong genetic influence on human physical performance, with an emphasis on two sets of physical traits, viz. cardiorespiratory and skeletal muscle function, which are particularly important for performance in a variety of sports. We will then review recent studies that have identified individual genetic variants associated with variation in these traits and the polymorphisms that have been directly associated with elite athlete status. Finally, we explore the scientific implications of our rapidly growing understanding of the genetic basis of variation in performance.

References

  1. Alvarez R, Terrados N, Ortolano R, Iglesias-Cubero G, Reguero JR, Batalla A, Cortina A, Fernández-García B, Rodríguez C, Braga S, Alvarez V, Coto E (2000) Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol 82:117–120Google Scholar
  2. An P, Rice T, Gagnon J, Leon AS, Skinner JS, Bouchard C, Rao DC, Wilmore JH (2000) Familial aggregation of stroke volume and cardiac output during submaximal exercise: the HERITAGE Family Study. Int J Sports Med 21:566–572Google Scholar
  3. An P, Borecki IB, Rankinen T, Pérusse L, Leon AS, Skinner JS, Wilmore JH, Bouchard C, Rao DC (2003a) Evidence of major genes for exercise heart rate and blood pressure at baseline and in response to 20 weeks of endurance training: the HERITAGE family study. Int J Sports Med 24:492–498Google Scholar
  4. An P, Hong Y, Weisnagel SJ, Rice T, Rankinen T, Leon AS, Skinner JS, Wilmore JH, Chagnon YC, Bergman RN, Bouchard C, Rao DC (2003b) Genomic scan of glucose and insulin metabolism phenotypes: the HERITAGE family study. Metabolism 52:246–253Google Scholar
  5. An P, Pérusse L, Rankinen T, Borecki IB, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Bouchard C, Rao DC (2003c) Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: the HERITAGE family study. Int J Sports Med 24:57–62Google Scholar
  6. Arinami T, Li L, Mitsushio H, Itokawa M, Hamaguchi H, Toru M (1996) An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol Psychiatry 40:1122–1127Google Scholar
  7. Baron M (2001) The search for complex disease genes: fault by linkage or fault by association?. Mol Psychiatry 6:143–149Google Scholar
  8. Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84CrossRefPubMedGoogle Scholar
  9. Berlo JH van, Pinto YM (2003) Polymorphisms in the RAS and cardiac function. Int J Biochem Cell Biol 35:932–943Google Scholar
  10. Bouchard C, Chagnon M, Thibault MC, Boulay MR, Marcotte M, Cote C, Simoneau JA (1989) Muscle genetic variants and relationship with performance and trainability. Med Sci Sports Exerc 21:71–77Google Scholar
  11. Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH, Gagnon J (1995) The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc 27:721–729Google Scholar
  12. Bouchard C, Malina RM, Pérusse L (1997) Genetics of fitness and physical performance. Human Kinetics, Champaign, Ill.Google Scholar
  13. Bouchard C, Daw EW, Rice T, Pérusse L, Gagnon J, Province MA, Leon AS, Rao DC, Skinner JS, Wilmore JH (1998) Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc 30:252–258Google Scholar
  14. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Pérusse L, Leon AS, Rao DC (1999) Familial aggregation of VO2max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol 87:1003–1008Google Scholar
  15. Bouchard C, Rankinen T, Chagnon YC, Rice T, Pérusse L, Gagnon J, Borecki I, An P, Leon AS, Skinner JS, Wilmore JH, Province M, Rao DC (2000) Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study. J Appl Physiol 88:551–559Google Scholar
  16. Braun A, Kammerer S, Maier E, Böhme E, Roscher AA (1996) Polymorphisms in the gene for the human B2-bradykinin receptor. New tools in assessing a genetic risk for bradykinin-associated diseases. Immunopharmacology 33:32–35Google Scholar
  17. Brull D, Dhamrait S, Myerson S, Erdmann J, Woods D, World M, Pennell D, Humphries S, Regitz-Zagrosek V, Montgomery H (2001) Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet 358:1155–1156Google Scholar
  18. Calvo M, Rodas G, Vallejo M, Estruch A, Arcas A, Javierre C, Viscor G, Ventura JL (2002) Heritability of explosive power and anaerobic capacity in humans. Eur J Appl Physiol 86:218–225Google Scholar
  19. Chagnon YC, Rice T, Pérusse L, Borecki IB, Ho-Kim M-A, Lacaille M, Paré C, Bouchard L, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2001) Genomic scan for genes affecting body composition before and after training in Caucasians from HERITAGE. J Appl Physiol 90:1777–1787Google Scholar
  20. Chen X, Liu S, Ye Y, Xu Q (1997) Association of angiotensin-converting enzyme gene insertion/deletion polymorphism with the clinico-pathological manifestations in immunoglobulin A nephropathy patients. Chin Med J 110:526–529Google Scholar
  21. Coates D (2003) The angiotensin converting enzyme (ACE). Int J Biochem Cell Biol 35:769–773Google Scholar
  22. Crisan D, Carr J (2000) Angiotensin I-converting enzyme: genotype and disease associations. J Mol Diagn 2:105–115Google Scholar
  23. Damme R van, Wilson RS, Vanhooydonck B, Aerts P (2002) Performance constraints in decathletes. Nature 415:755–756Google Scholar
  24. Danser AH, Schalekamp MA, Bax WA, Brink AM van den, Saxena PR, Riegger GA, Schunkert H (1995) Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 92:1387–1388PubMedGoogle Scholar
  25. Diet F, Graf C, Mahnke N, Wassmer G, Predel HG, Palma-Hohmann I, Rost R, Böhm M (2001) ACE and angiotensinogen gene genotypes and left ventricular mass in athletes. Eur J Clin Invest 31:836–842Google Scholar
  26. Dionne FT, Turcotte L, Thibault MC, Boulay MR, Skinner JS, Bouchard C (1991) Mitochondrial DNA sequence polymorphism, VO2max, and response to endurance training. Med Sci Sports Exerc 23:177–185Google Scholar
  27. Echegaray M, Rivera MA (2001) Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence. Sports Med 31:919–934Google Scholar
  28. Eisenach JH, McGuire AM, Schwingler RM, Turner ST, Joyner MJ (2004) The Arg16/Gly β2-adrenergic receptor polymorphism is associated with altered cardiovascular responses to isometric exercise. Physiol Genomics 16:323–328Google Scholar
  29. Fatini C, Guazzelli R, Manetti P, Battaglini B, Gensini F, Vono R, Toncelli L, Zilli P, Capalbo A, Abbate R, Gensini GF, Galanti G (2000) RAS genes influence exercise-induced left ventricular hypertrophy: an elite athletes study. Med Sci Sports Exerc 32:1868–1872Google Scholar
  30. Feitosa MF, Gaskill SE, Rice T, Rankinen T, Bouchard C, Rao DC, Wilmore JH, Skinner JS, Leon AS (2002) Major gene effects on exercise ventilatory threshold: the HERITAGE Family Study. J Appl Physiol 93:1000–1006Google Scholar
  31. Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, Jones D (2000) Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol 85:575–579Google Scholar
  32. Franks PW, Barroso I, Luan J, Ekelund U, Crowley VE, Brage S, Sandhu MS, Jakes RW, Middelberg RP, Harding AH, Schafer AJ, O’Rahilly S, Wareham NJ (2003) PGC-1α genotype modifies the association of volitional energy expenditure with VO2max. Med Sci Sports Exerc 35:1998–2004Google Scholar
  33. Gaskill SE, Rice T, Bouchard C, Gagnon J, Rao DC, Skinner JS, Wilmore JH, Leon AS (2001) Familial resemblance in ventilatory threshold: the HERITAGE Family Study. Med Sci Sports Exerc 33:1832–1840Google Scholar
  34. Gayagay G, Yu B, Hambly B, Boston T, Hahn A, Celermajer DS, Trent RJ (1998) Elite endurance athletes and the ACE I allele–the role of genes in athletic performance. Hum Genet 103:48–50CrossRefPubMedGoogle Scholar
  35. Geusens P, Vandevyver C, Vanhoof J, Cassiman JJ, Boonen S, Raus J (1997) Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Miner Res 12:2082–2088Google Scholar
  36. Grundberg E, Brandstrom H, Ribom EL, Ljunggren O, Mallmin H, Kindmark A (2004) Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur J Endocrinol 150:323–328Google Scholar
  37. Hagberg JM, Ferrell RE, McCole SD, Wilund KR, Moore GE (1998) VO2max is associated with ACE genotype in postmenopausal women. J Appl Physiol 85:1842–1846Google Scholar
  38. Hamel P, Simoneau JA, Lortie G, Boulay MR, Bouchard C (1986) Heredity and muscle adaptation to endurance training. Med Sci Sports Exerc 18:690–696Google Scholar
  39. Harding D, Baines PB, Brull D, Vassiliou V, Ellis I, Hart A, Thomson AP, Humphries SE, Montgomery HE (2002) Severity of meningococcal disease in children and the angiotensin-converting enzyme insertion/deletion polymorphism. Am J Respir Crit Care Med 165:1103–1106Google Scholar
  40. Heiskanen JT, Pirskanen MM, Hiltunen MJ, Mannermaa AJ, Punnonen KR, Heinonen ST (2001) Insertion-deletion polymorphism in the gene for angiotensin-converting enzyme is associated with obstetric cholestasis but not with preeclampsia. Am J Obstet Gynecol 185:600–603Google Scholar
  41. Hernández D, Rosa A de la, Barragán A, Barrios Y, Salido E, Torres A, Martín B, Laynez I, Duque A, De Vera A, Lorenzo V, González A (2003) The ACE/DD genotype is associated with the extent of exercise-induced left ventricular growth in endurance athletes. J Am Coll Cardiol 42:527–532Google Scholar
  42. Ioannidis JP (2003) Genetic associations: false or true? Trends Mol Med 9:135–138PubMedGoogle Scholar
  43. Jamshidi Y, Montgomery HE, Hense HW, Myerson SG, Torra IP, Staels B, World MJ, Doering A, Erdmann J, Hengstenberg C, Humphries SE, Schunkert H, Flavell DM (2002) Peroxisome proliferator-activated receptor α gene regulates left ventricular growth in response to exercise and hypertension. Circulation 105:950–955Google Scholar
  44. Jones A, Woods DR (2003) Skeletal muscle RAS and exercise performance. Int J Biochem Cell Biol 35:855–866Google Scholar
  45. Jordan BD, Relkin NR, Ravdin LD, Jacobs AR, Bennett A, Gandy S (1997) Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing. JAMA 278:136–140Google Scholar
  46. Karjalainen J, Kujala UM, Stolt A, Mäntysaari M, Viitasalo M, Kainulainen K, Kontula K (1999) Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J Am Coll Cardiol 34:494–499Google Scholar
  47. Kauma H, Ikäheimo M, Savolainen MJ, Kiema TR, Rantala AO, Lilja M, Reunanen A, Kesäniemi YA (1998) Variants of renin-angiotensin system genes and echocardiographic left ventricular mass. Eur Heart J 19:1109–1117Google Scholar
  48. Lewis CM (2002) Genetic association studies: design, analysis and interpretation. Brief Bioinform 3:146–153Google Scholar
  49. Linhart A, Sedlácek K, Jáchymová M, Jindra A, Beran S, Vondrácek V, Heller S, Horký K (2000) Lack of association of angiotensin-converting enzyme and angiotensinogen genes polymorphisms with left ventricular structure in young normotensive men. Blood Press 9:47–51Google Scholar
  50. MacArthur DG, North KN (2004) A gene for speed? The function and evolution of α-actinin-3. Bioessays 26:786–795Google Scholar
  51. Maes HH, Beunen GP, Vlietinck RF, Neale MC, Thomis M, Vanden Eynde B, Lysens R, Simons J, Derom C, Derom R (1996) Inheritance of physical fitness in 10-yr-old twins and their parents. Med Sci Sports Exerc 28:1479–1491Google Scholar
  52. McCole SD, Brown MD, Moore GE, Ferrell RE, Wilund KR, Huberty A, Douglass LW, Hagberg JM (2002) Angiotensinogen M235T polymorphism associates with exercise hemodynamics in postmenopausal women. Physiol Genomics 10:63–69Google Scholar
  53. Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K (2001) Differential expression of the actin-binding proteins, α-actinin-2 and −3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet 10:1335–1346CrossRefPubMedGoogle Scholar
  54. Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi MA, Hemingway H, Statters D, Jubb M, Girvain M, Varnava A, World M, Deanfield J, Talmud P, McEwan JR, McKenna WJ, Humphries S (1997) Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 96:741–747Google Scholar
  55. Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, Hayward M, Holliman DE, Jubb M, World M, Thomas EL, Brynes AE, Saeed N, Barnard M, Bell JD, Prasad K, Rayson M, Talmud PJ, Humphries SE (1998) Human gene for physical performance. Nature 393:221–222CrossRefPubMedGoogle Scholar
  56. Moore GE, Shuldiner AR, Zmuda JM, Ferrell RE, McCole SD, Hagberg JM (2001) Obesity gene variant and elite endurance performance. Metabolism 50:1391–1392Google Scholar
  57. Myburgh KH (2003) What makes an endurance athlete world-class? Not simply a physiological conundrum. Comp Biochem Physiol [A] 136:171–190Google Scholar
  58. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H (1999) Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol 87:1313–1316PubMedGoogle Scholar
  59. Nagashima J, Musha H, Takada H, Awaya T, Oba H, Mori N, Ohmiya K, Nobuoka S, Murayama M (2000) Influence of angiotensin-converting enzyme gene polymorphism on development of athlete’s heart. Clin Cardiol 23:621–624Google Scholar
  60. Nazarov IB, Woods DR, Montgomery HE, Shneider OV, Kazakov VI, Tomilin NV, Rogozkin VA (2001) The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet 9:797–801CrossRefPubMedGoogle Scholar
  61. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH (1999) A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nat Genet 21:353–354Google Scholar
  62. Pérusse L, Gagnon J, Province MA, Rao DC, Wilmore JH, Leon AS, Bouchard C, Skinner JS (2001) Familial aggregation of submaximal aerobic performance in the HERITAGE Family study. Med Sci Sports Exerc 33:597–604Google Scholar
  63. Pérusse L, Rankinen T, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2003) The human gene map for performance and health-related fitness phenotypes: the 2002 update. Med Sci Sports Exerc 35:1248–1264PubMedGoogle Scholar
  64. Pottelbergh I van, Goemaere S, Nuytinck L, De Paepe A, Kaufman JM (2001) Association of the type I collagen alpha1 Sp1 polymorphism, bone density and upper limb muscle strength in community-dwelling elderly men. Osteoporos Int 12:895–901Google Scholar
  65. Pullmann R Jr, Lukac J, Skerenova M, Rovensky J, Hybenova J, Melus V, Celec S, Pullmann R, Hyrdel R (1999) Association between systemic lupus erythematosus and insertion/deletion polymorphism of the angiotensin converting enzyme (ACE) gene. Clin Exp Rheumatol 17:593–596Google Scholar
  66. Rankinen T, Pérusse L, Gagnon J, Chagnon YC, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2000a) Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the HERITAGE Family Study. J Appl Physiol 88:1029–1035Google Scholar
  67. Rankinen T, Pérusse L, Borecki I, Chagnon YC, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2000b) The Na+ –K+ -ATPase α2 gene and trainability of cardiorespiratory endurance: the HERITAGE family study. J Appl Physiol 88:346–351Google Scholar
  68. Rankinen T, Wolfarth B, Simoneau JA, Maier-Lenz D, Rauramaa R, Rivera MA, Boulay MR, Chagnon YC, Pérusse L, Keul J, Bouchard C (2000c) No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol 88:1571–1575Google Scholar
  69. Rankinen T, An P, Rice T, Sun G, Chagnon YC, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2001a) Genomic scan for exercise blood pressure in the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Hypertension 38:30–37Google Scholar
  70. Rankinen T, Pérusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2001b) The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc 33:855–867Google Scholar
  71. Rankinen T, An P, Pérusse L, Rice T, Chagnon YC, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2002a) Genome-wide linkage scan for exercise stroke volume and cardiac output in the HERITAGE Family Study. Physiol Genomics 10:57–62Google Scholar
  72. Rankinen T, Pérusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2002b) The human gene map for performance and health-related fitness phenotypes: the 2001 update. Med Sci Sports Exerc 34:1219–1233Google Scholar
  73. Rankinen T, Pérusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2004) The human gene map for performance and health-related fitness phenotypes: the 2003 update. Med Sci Sports Exerc 36:1451–1469Google Scholar
  74. Rice T, Chagnon YC, Pérusse L, Borecki IB, Ukkola O, Rankinen T, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Bouchard C, Rao DC (2002a) A genomewide linkage scan for abdominal subcutaneous and visceral fat in black and white families. Diabetes 51:848–855Google Scholar
  75. Rice T, Rankinen T, Chagnon YC, Province MA, Pérusse L, Leon AS, Skinner JS, Wilmore JH, Bouchard C, Rao DC (2002b) Genomewide linkage scan of resting blood pressure. Hypertension 39:1037–1043Google Scholar
  76. Rico-Sanz J, Rankinen T, Joanisse DR, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C, HERITAGE Family (2003a) Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study. Physiol Genomics 14:161–166Google Scholar
  77. Rico-Sanz J, Rankinen T, Joanisse DR, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C, HERITAGE Family (2003b) Familial resemblance for muscle phenotypes in the HERITAGE Family Study. Med Sci Sports Exerc 35:1360–1366Google Scholar
  78. Rico-Sanz J, Rankinen T, Rice T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2004) Quantitative trait loci for maximal exercise capacity phenotypes and their responses to training in the HERITAGE Family Study. Physiol Genomics 16:256–260Google Scholar
  79. Rieder MJ, Taylor SL, Clark AG, Nickerson DA (1999) Sequence variation in the human angiotensin converting enzyme. Nat Genet 22:59–62Google Scholar
  80. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346PubMedGoogle Scholar
  81. Rivera MA, Dionne FT, Simoneau JA, Pérusse L, Chagnon M, Chagnon Y, Gagnon J, Leon AS, Rao DC, Skinner JS, Wilmore JH, Bouchard C (1997a) Muscle-specific creatine kinase gene polymorphism and VO2max in the HERITAGE Family Study. Med Sci Sports Exerc 29:1311–1317Google Scholar
  82. Rivera MA, Dionne FT, Wolfarth B, Chagnon M, Simoneau JA, Pérusse L, Boulay MR, Gagnon J, Song TM, Keul J, Bouchard C (1997b) Muscle-specific creatine kinase gene polymorphisms in elite endurance athletes and sedentary controls. Med Sci Sports Exerc 29:1444–1447Google Scholar
  83. Rivera MA, Pérusse L, Simoneau JA, Gagnon J, Dionne FT, Leon AS, Skinner JS, Wilmore JH, Province M, Rao DC, Bouchard C (1999) Linkage between a muscle-specific CK gene marker and VO2max in the HERITAGE Family Study. Med Sci Sports Exerc 31:698–701Google Scholar
  84. Rizzo M, Gensini F, Fatini C, Manetti P, Pucci N, Capalbo A, Vono MC, Galanti G (2003) ACE I/D polymorphism and cardiac adaptations in adolescent athletes. Med Sci Sports Exerc 35:1986–1990Google Scholar
  85. Rodas G, Ercilla G, Javierre C, Garrido E, Calvo M, Segura R, Ventura JL (1997) Could the A2A11 human leucocyte antigen locus correlate with maximal aerobic power? Clin Sci (Colch) 92:331–333Google Scholar
  86. Romero R, Kuivaniemi H, Tromp G, Olson J (2002) The design, execution, and interpretation of genetic association studies to decipher complex diseases. Am J Obstet Gynecol 187:1299–1312Google Scholar
  87. Roth SM, Schrager MA, Ferrell RE, Riechman SE, Metter EJ, Lynch NA, Lindle RS, Hurley BF (2001) CNTF genotype is associated with muscular strength and quality in humans across the adult age span. J Appl Physiol 90:1205–1210Google Scholar
  88. Roth SM, Metter EJ, Lee MR, Hurley BF, Ferrell RE (2003) C174T polymorphism in the CNTF receptor gene is associated with fat-free mass in men and women. J Appl Physiol 95:1425–1430Google Scholar
  89. Sagnella GA, Rothwell MJ, Onipinla AK, Wicks PD, Cook DG, Cappuccio FP (1999) A population study of ethnic variations in the angiotensin-converting enzyme I/D polymorphism: relationships with gender, hypertension and impaired glucose metabolism. J Hypertens 17:657–664Google Scholar
  90. Sayer AA, Syddall H, O’Dell SD, Chen XH, Briggs PJ, Briggs R, Day IN, Cooper C (2002) Polymorphism of the IGF2 gene, birth weight and grip strength in adult men. Age Ageing 31:468–470Google Scholar
  91. Seibert MJ, Xue QL, Fried LP, Walston JD (2001) Polymorphic variation in the human myostatin (GDF-8) gene and association with strength measures in the Women’s Health and Aging Study II cohort. J Am Geriatr Soc 49:1093–1096Google Scholar
  92. Simoneau JA, Bouchard C (1995) Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J 9:1091–1095Google Scholar
  93. Tang W, Devereux RB, Kitzman DW, Province MA, Leppert M, Oberman A, Hopkins PN, Arnett DK (2003) The Arg16Gly polymorphism of the β2-adrenergic receptor and left ventricular systolic function. Am J Hypertens 16:945–951Google Scholar
  94. Taylor RR, Mamotte CDS, Fallon K, Bockxmeer FM van (1999) Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol 87:1035–1037Google Scholar
  95. Thibault MC, Simoneau JA, Cote C, Boulay MR, Lagasse P, Marcotte M, Bouchard C (1986) Inheritance of human muscle enzyme adaptation to isokinetic strength training. Hum Hered 36:341–347Google Scholar
  96. Thomis MA, Beunen GP, Maes HH, Blimkie CJ, Van Leemputte M, Claessens AL, Marchal G, Willems E, Vlietinck RF (1998) Strength training: importance of genetic factors. Med Sci Sports Exerc 30:724–731Google Scholar
  97. Thompson PD, Tsongalis GJ, Seip RL, Bilbie C, Miles M, Zoeller R, Visich P, Gordon P, Angelopoulos TJ, Pescatello L, Bausserman L, Moyna N (2004) Apolipoprotein E genotype and changes in serum lipids and maximal oxygen uptake with exercise training. Metabolism 53:193–202Google Scholar
  98. Williams AG, Rayson MP, Jubb M, World M, Woods DR, Hayward M, Martin J, Humphries SE, Montgomery HE (2000) The ACE gene and muscle performance. Nature 403:614CrossRefGoogle Scholar
  99. Williams AG, Dhamrait SS, Wootton PTE, Day SH, Hawe E, Payne JR, Myerson SG, World M, Budgett R, Humphries SE, Montgomery HE (2004) Bradykinin receptor gene variant and human physical performance. J Appl Physiol 96:938–942Google Scholar
  100. Wolfarth B, Rivera MA, Oppert JM, Boulay MR, Dionne FT, Chagnon M, Gagnon J, Chagnon Y, Pérusse L, Keul J, Bouchard C (2000) A polymorphism in the alpha2a-adrenoceptor gene and endurance athlete status. Med Sci Sports Exerc 32:1709–1712Google Scholar
  101. Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V, Jones A, Humphries S, Montgomery H (2001) Elite swimmers and the D allele of the ACE I/D polymorphism. Hum Genet 108:230–232CrossRefPubMedGoogle Scholar
  102. Woods DR, World M, Rayson MP, Williams AG, Jubb M, Jamshidi Y, Hayward M, Mary DA, Humphries SE, Montgomery HE (2002) Endurance enhancement related to the human angiotensin I-converting enzyme I-D polymorphism is not due to differences in the cardiorespiratory response to training. Eur J Appl Physiol 86:240–244CrossRefPubMedGoogle Scholar
  103. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K (2003) ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 73:627–631CrossRefPubMedGoogle Scholar
  104. Zhang B, Tanaka H, Shono N, Miura S, Kiyonaga A, Shindo M, Saku K (2003) The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 63:139–144Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute for Neuromuscular ResearchChildren’s Hospital at WestmeadSydneyAustralia
  2. 2.Discipline of Paediatrics and Child Health, Faculty of MedicineUniversity of SydneySydneyAustralia

Personalised recommendations