Skip to main content

The EPAS1 gene influences the aerobic–anaerobic contribution in elite endurance athletes

Absract

EPAS1 is a gene involved in complex oxygen sensing. It is expressed in microvascular endothelial cells, lung epithelial cells, cardiac myocytes and the brain. An association study was undertaken comparing elite endurance athletes classified into two groups according to a power–time model of performance intensity: power–time-maximum (PT-MAX; N=242, event duration 50 s to 10 min) and power–time–steady state (PT-SS; N=151, event duration ~2–10 h), with normal controls (N=444) using 12 SNPs across EPAS1. Ordinal regression analysis of allele frequencies revealed significant differences at SNPs 2 and 3 (P=0.01). Haplotype analysis revealed the presence of haplotypes involving SNPs 2–5 that significantly differentiated (P<0.05) the groups based on an ordinal ranking using the power–time classification. These same haplotypes differentiated the PT-MAX group in which a significant decrease in a haplotype (F: G-C-C-G; OR=0.57, P=0.02, 95% CI 0.36–0.92) and increase in a second haplotype (G: A-T-G-G; OR=1.75, P=0.03, 95% CI 1.05–2.91) was observed compared to controls. The PT-SS group was differentiated from the PT-MAX group by a third haplotype (H: A-T-G-A; OR=0.46, P=0.04, 95% CI 0.22–0.96). Since EPAS1 has a role as a sensor capable of integrating cardiovascular function, energetic demand, muscle activity and oxygen availability into physiological adaptation, we propose that DNA variants in EPAS1 influence the relative contribution of aerobic and anaerobic metabolism and hence the maximum sustainable metabolic power for a given event duration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    PubMed  Article  CAS  Google Scholar 

  2. Bouchard C, Rankinen T, Chagnon YC, Rice T, Perusse L, Gagnon J, Borecki I, An P, Leon AS, Skinner JS, Wilmore JH, Province M, Rao DC (2000) Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study. J Appl Physiol 88:551–559

    PubMed  CAS  Google Scholar 

  3. Demidenko ZN, Rapisarda A, Garayoa M, Giannakakou P, Melillo G, Blagosklonny MV (2005) Accumulation of hypoxia-inducible factor-1alpha is limited by transcription-dependent depletion. Oncogene 24:4829–4838

    PubMed  Article  CAS  Google Scholar 

  4. Dery MA, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37:535–540

    PubMed  Article  CAS  Google Scholar 

  5. di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90:420–429

    PubMed  Article  Google Scholar 

  6. Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216

    PubMed  Article  CAS  Google Scholar 

  7. Hill AV (1925) The physiological basis of athletic records. Lancet 206:481–486

    Article  Google Scholar 

  8. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23:9361–9374

    PubMed  Article  CAS  Google Scholar 

  9. Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    PubMed  Article  CAS  Google Scholar 

  10. Kayser B (2003) Exercise starts and ends in the brain. Eur J Appl Physiol 90:411–419

    PubMed  Article  Google Scholar 

  11. Medbo JI, Sejersted OM (1985) Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects. Acta Physiol Scand 125:97–109

    PubMed  CAS  Article  Google Scholar 

  12. Medbo JI, Tabata I (1989) Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 67:1881–1886

    PubMed  CAS  Google Scholar 

  13. Minet E, Ernest I, Michel G, Roland I, Remacle J, Raes M, Michiels C (1999) HIF1A gene transcription is dependent on a core promoter sequence encompassing activating and inhibiting sequences located upstream from the transcription initiation site and cis elements located within the 5′UTR. Biochem Biophys Res Commun 261:534–540

    PubMed  Article  CAS  Google Scholar 

  14. Monod H, Scherrer J (1965) The work capacity of synergistic muscular group. Ergonomics 8:329–338

    Article  Google Scholar 

  15. Myburgh KH (2003) What makes an endurance athlete world-class? Not simply a physiological conundrum. Comp Biochem Physiol A Mol Integr Physiol 136:171–190

    PubMed  Article  CAS  Google Scholar 

  16. Noakes TD, Peltonen JE, Rusko HK (2001) Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol 204:3225–3234

    PubMed  CAS  Google Scholar 

  17. Nummela A, Rusko H (1995) Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes. Int J Sports Med 16:522–527

    PubMed  Article  CAS  Google Scholar 

  18. Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97:8386–8391

    PubMed  Article  CAS  Google Scholar 

  19. Rankinen T, Perusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2004) The human gene map for performance and health-related fitness phenotypes: the 2003 update. Med Sci Sports Exerc 36:1451–1469

    PubMed  Article  Google Scholar 

  20. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434

    PubMed  Article  Google Scholar 

  21. Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, Marck BT, Matsumoto AM, Shelton JM, Richardson JA, Bennett MJ, Garcia JA (2003a) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet 35:331–340

    PubMed  Article  CAS  Google Scholar 

  22. Scortegagna M, Morris MA, Oktay Y, Bennett M, Garcia JA (2003b) The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood 102:1634–1640

    PubMed  Article  CAS  Google Scholar 

  23. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    PubMed  Article  CAS  Google Scholar 

  24. Spencer MR, Gastin PB (2001) Energy system contribution during 200- to 1,500-m running in highly trained athletes. Med Sci Sports Exerc 33:157–162

    PubMed  CAS  Google Scholar 

  25. St Clair Gibson A, Noakes TD (2004) Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med 38:797–806

    PubMed  Article  CAS  Google Scholar 

  26. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324

    PubMed  Article  CAS  Google Scholar 

  27. Van Damme R, Wilson RS, Vanhooydonck B, Aerts P (2002) Performance constraints in decathletes. Nature 415:755–756

    PubMed  Google Scholar 

  28. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    PubMed  Article  CAS  Google Scholar 

  29. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt KU (2003) Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. Faseb J 17:271–273

    PubMed  CAS  Google Scholar 

  30. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, Ratcliffe PJ, Maxwell PH (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92:2260–2268

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided through a grant from the Australia Research Council. We thank the reviewers for their helpful feedback, and Prof K North for providing DNA from 33 track runners and 19 cyclists.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ronald J. Trent.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henderson, J., Withford-Cave, J.M., Duffy, D.L. et al. The EPAS1 gene influences the aerobic–anaerobic contribution in elite endurance athletes. Hum Genet 118, 416 (2005). https://doi.org/10.1007/s00439-005-0066-0

Download citation

Keywords

  • Hypoxia Inducible Factor
  • Allelic Combination
  • Athlete Group
  • Ordinal Regression Analysis
  • Conservative Bonferroni Correction