Skip to main content
Log in

The keeshond defect in cardiac conotruncal development is oligogenic1

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Earlier studies in the keeshond breed of dogs established that isolated conotruncal defects (CTDs) are a group of genetically and embryologically related cardiac malformations, including sub-clinical defects of the conal septum, conal ventricular septal defects, tetralogy of Fallot, and persistent truncus arteriosus. The same spectrum occurs in some human families. In both species, inheritance of non-syndromic CTDs is usually complex and multifactorial inheritance has been assumed. Previous studies in the keeshond suggested that susceptibility to CTD is an autosomal recessive trait, with alleles at modifying loci affecting severity. Here we report results of a genome-wide scan for CTD linked loci in a keeshond × beagle F1 backcross pedigree in which 46 of 101 offspring had CTDs. Two-point linkage analysis identified regions of suggestive linkage on each of three chromosomes CFA2, CFA9, and CFA15. No single locus accounted for segregation of CTDs in the pedigree, ruling out a single autosomal susceptibility locus. Multipoint analysis with Genehunter resulted in a corrected LOD score of 3.7 at the locus on CFA9 and supported linkage to the loci on CFA2 and CFA15 (LOD scores of 2.71 and 3.03). Genehunter Twolocus analysis suggested that CTD-predisposing alleles of these three loci are necessary, at least in pairs, to produce CTD. The canine CTD-linked chromosome regions are orthologous to human regions HSA5q11-13, HSA5q31, HSA17q11-24, and HSA4q31. We excluded from the linked regions in the dog, a number of genes known to have a role in the etiology of CTDs and predict that continuing studies will identify CTD-predisposing genes not previously recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andelfinger G, Wright KN, Lee HS, Siemens LM, Benson DW (2003) Canine tricuspid valve malformation, a model of human Ebstein anomaly, maps to dog chromosome 9. J Med Genet 40:320–324

    Google Scholar 

  • Andelfinger G, Hitte C, Etter L, Guyon R, Bourque G, Tesler G, Pevzner P, Kirkness E, Galibert F, Benson DW (2004) Detailed four-way comparative mapping and gene order analysis of the canine ctvm locus reveals evolutionary chromosome rearrangements. Genomics 83:1053–1062

    Google Scholar 

  • Becker SM, Al Halees Z, Molina C, Paterson RM (2001) Consanguinity and congenital heart disease in Saudi Arabia. Am J Med Genet 99:8–13

    Google Scholar 

  • Benson DW, Sharkey A, Fatkin D, Lang P, Basson CT, McDonough B, Strauss AW, Seidman JG, Seidman CE (1998) Reduced penetrance, variable expressivity, and genetic heterogeneity of familial atrial septal defects. Circulation 97:2043–2048

    Google Scholar 

  • Borg JP, Marchetto S, Le Bivic A, Ollendorff V, Jaulin-Bastard F, Saito H, Fournier E, Adelaide J, Margolis B, Birnbaum D (2000) ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nat Cell Biol 2:407–414

    Article  CAS  PubMed  Google Scholar 

  • Breen M, Jouquand S, Renier C, Mellersh CS, Hitte C, Holmes NG, Cheron A, Suter N, Vignaux F, Bristow AE, Priat C, McCann E, Andre C, Boundy S, Gitsham P, Thomas R, Bridge WL, Spriggs HF, Ryder EJ, Curson A, Sampson J, Ostrander EA, Binns MM, Galibert F (2001) Chromosome-specific single-locus FISH probes allow anchorage of an 1800-marker integrated radiation-hybrid/linkage map of the domestic dog genome to all chromosomes. Genome Res 11:1784–1795

    Article  CAS  PubMed  Google Scholar 

  • Burn J, Goodship J (2002) Congenital heart disease. In: Rimoin DL, O’Connor JM, Pyeritz RE, Korf BR (eds) Emery and Rimoin’s principles and practice of medical genetics. Churchill Livingstone, London New York, pp 1239–1326

    Google Scholar 

  • Burn J, Brennan P, Little J, Holloway S, Coffey R, Somerville J, Dennis NR, Allan L, Arnold R, Deanfield JE, Godman M, Houston A, Keeton B, Oakley C, Scott O, Silove E, Wilkinson J, Pembrey M, Hunter AS (1998) Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. Lancet 351:311–316

    Article  CAS  PubMed  Google Scholar 

  • Clark EB (1996) Pathogenetic mechanisms of congenital cardiovascular malformations revisited. Semin Perinatol 20:465–472

    Google Scholar 

  • Clerget-Darpoux F, Bonaiti-Pellie C, Hochez J (1986) Effects of misspecifying genetic parameters in lod score analysis. Biometrics 42:393–399

    Google Scholar 

  • Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H, Kuwaki T, Kumada M, Hammer RE, Yanagisawa M (1998) Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125:813–824

    CAS  PubMed  Google Scholar 

  • Cripps RM, Olson EN (2002) Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 246:14–28

    Article  CAS  PubMed  Google Scholar 

  • Edwards JH (1960) The simulation of Mendelism. Acta Genet Stat Med 10:63–70

    Google Scholar 

  • Fraser FC, Hunter ADW (1975) Etiologic relations among categories of congenital heart malformations. Am J Cardiol 36:793–796

    Google Scholar 

  • Goedken R, Ludington E, Crowe R, Fyer AJ, Hodge SE, Knowles JA, Vieland VJ, Weissman MM (2000) Drawbacks of GENEHUNTER for larger pedigrees: application to panic disorder. Am J Med Genet 96:781–783

    Google Scholar 

  • Greenberg DA (1989) Inferring mode of inheritance by comparison of lod scores. Am J Med Genet 34:480–486

    Google Scholar 

  • Greenberg DA, Abreu P, Hodge SE (1998) The power to detect linkage in complex disease by means of simple LOD-score analyses. Am J Hum Genet 63:870–879

    Article  Google Scholar 

  • Guyon R, Lorentzen TD, Hitte C, Kim L, Cadieu E, Parker HG, Quignon P, Lowe JK, Renier C, Gelfenbeyn B, Vignaux F, DeFrance HB, Gloux S, Mahairas GG, Andre C, Galibert F, Ostrander EA (2003) A 1-Mb resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci USA 100:5296–5301

    Article  CAS  PubMed  Google Scholar 

  • Hodge SE, Abreu PC, Greenberg DA (1997) Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study. Am J Hum Genet 60:217–227

    Google Scholar 

  • Jouquand S, Priat C, Hitte C, Lachaume P, Andre C, Galibert F (2000) Identification and characterization of a set of 100 tri- and dinucleotide microsatellites in the canine genome. Anim Genet 31:266–272

    Google Scholar 

  • Keyes WM, Logan C, Parker E, Sanders EJ (2003) Expression and function of bone morphogenetic proteins in the development of the embryonic endocardial cushions. Anat Embryol (Berl) 207:135–147

    Google Scholar 

  • Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch DB, Delcher AL, Pop M, Wang W, Fraser CM, Venter JC (2003) The dog genome: survey sequencing and comparative analysis. Science 301:1898–1903

    Article  PubMed  Google Scholar 

  • Krantz ID, Smith R, Colliton RP, Tinkel H, Zackai EH, Piccoli DA, Goldmuntz E, Spinner NB (1999) Jagged1 mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet 84:56–60

    Google Scholar 

  • Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    CAS  PubMed  Google Scholar 

  • Kumai M, Nishii K, Nakamura K, Takeda N, Suzuki M, Shibata Y (2000) Loss of connexin45 causes a cushion defect in early cardiogenesis. Development (Suppl) 127:3501–3512

    Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results (see comments). Nat Genet 11:241–247

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • le Marec B, Odent S, Almange C, Journel H, Roussey M, Defawe G (1989) Truncus arteriosus: an autosomal recessive disease? J Genet Hum 37:225–230

    Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing Genetic Maps with MAPMAKER/EXP3.0, 3rd edn. Whitehead Institute, Cambridge, Mass.

    Google Scholar 

  • Mani A, Meraji SM, Houshyar R, Radhakrishnan J, Ahangar M, Rezaie TM, Taghavinejad MA, Broumand B, Zhao H, Nelson-Williams C, Lifton RP (2002) Finding genetic contributions to sporadic disease: a recessive locus at 12q24 commonly contributes to patent ductus arteriosus. Proc Natl Acad Sci USA 99:15054–15059

    Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  CAS  PubMed  Google Scholar 

  • Mellersh CS, Hitte C, Richman M, Vignaux F, Priat C, Jouquand S, Werner P, Andre C, DeRose S, Patterson DF, Ostrander EA, Galibert F (2000) An integrated linkage-radiation hybrid map of the canine genome. Mamm Genome 11:120–130

    Article  CAS  PubMed  Google Scholar 

  • Mjaatvedt CH, Yamamura H, Capehart AA, Turner D, Markwald RR (1998) The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev Biol 202:56–66

    Google Scholar 

  • Nabulsi MM, Tamim H, Sabbagh M, Obeid MY, Yunis KA, Bitar FF (2003) Parental consanguinity and congenital heart malformations in a developing country. Am J Hum Genet 116A:342–347

    Google Scholar 

  • Nora JJ (1968) Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic environmental interaction. Circulation 38:604–617

    Google Scholar 

  • Nora JJ (1993) Causes of congenital heart diseases: old and new modes, mechanisms, and models. Am Heart J 125:1409–1419

    Article  CAS  PubMed  Google Scholar 

  • Ostrander EA, Galibert F, Patterson DF (2000) Canine genetics comes of age. Trends Genet 16:117–124

    Article  CAS  PubMed  Google Scholar 

  • Parker HG, Yuhua X, Mellersh CS, Khan S, Shibuya H, Johnson GS, Ostrander EA (2001) Meiotic linkage mapping of 52 genes onto the canine map does not identify significant levels of microrearrangement. Mamm Genome 12:713–718

    Google Scholar 

  • Patterson DF, Pyle RL, Van Mierop L, Melbin J, Olson M (1974) Hereditary defects of the conotruncal septum in keeshond dogs: pathologic and genetic studies. Am J Cardiol 34:187–205

    Google Scholar 

  • Patterson DF, Pexieder T, Schnarr WR, Navratil T, Alaili R (1993) A single major-gene defect underlying cardiac conotruncal malformations interferes with myocardial growth during embryonic development: studies in the CTD line of Keeshond dogs. Am J Hum Genet 52:388–397

    Google Scholar 

  • Rein AJ, Sheffer R (1994) Genetics of conotruncal malformations: further evidence of autosomal recessive inheritance (letter). Am J Med Genet 50:302–303

    Google Scholar 

  • Rein AJ, Dollberg S, Gale R (1990) Genetics of conotruncal malformations: review of the literature and report of a consanguineous kindred with various conotruncal malformations. Am J Med Genet 36:353–355

    Google Scholar 

  • Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5 (see comments). Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  • Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. J Am Stat Assoc 82:605–610

    Google Scholar 

  • Sheffield VC (1997) Identification of a complex congenital heart defect susceptibility locus by using DNA pooling and shared segment analysis. Hum Mol Genet 6:117–121

    Google Scholar 

  • Sidjanin DJ, Miller B, Kijas J, McElwee J, Pillardy J, Malek J, Pai G, Feldblyum T, Fraser C, Acland G, Aguirre G (2003) Radiation hybrid map, physical map, and low-pass genomic sequence of the canine prcd region on CFA9 and comparative mapping with the syntenic region on human chromosome 17. Genomics 81:138–148

    Article  CAS  PubMed  Google Scholar 

  • Srivastava D (2001) Genetic assembly of the heart: implications for congenital heart disease. Annu Rev Physiol 63:451–469

    Article  CAS  PubMed  Google Scholar 

  • Strauch K, Fimmers R, Kurz T, Deichmann KA, Wienker TF, Baur MP (2000) Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am J Hum Genet 66:1945–1957

    Google Scholar 

  • Tiret L, Kessler JL, Bentolila S, Faure S, Bach JM, Weissenbach J, Panthier JJ (2000) Assignation of highly polymorphic markers on a canine purebred pedigree. Mamm Genome 11:703–705

    Google Scholar 

  • Van Mierop LHS, Patterson DF (1978) The pathogenesis of spontaneously occurring anomalies of the ventricular outflow tract in keeshond dogs:embryologic studies. Birth Defects 14:361–375

    Google Scholar 

  • Van Mierop LHS, Patterson DF, Schnarr WR (1978) Pathogenesis of persistent truncus arteriosus in light of observations made in a dog embryo with the anomaly. Am J Cardiol 41:755–762

    Google Scholar 

  • Werner P, Raducha MG, Prociuk U, Henthorn PS, Patterson DF (1997) Physical and linkage mapping of human chromosome 17 loci to dog chromosomes 9 and 5. Genomics 42:74–82

    Google Scholar 

  • Werner P, Raducha MG, Prociuk U, Lyons LA, Kehler JS, Henthorn PS, Patterson DF (1998) RXRA and HSPA5 map to the telomeric end of dog chromosome 9. Anim Genet 29:220–223

    Google Scholar 

  • Werner P, Mellersh CS, Raducha MG, DeRose S, Acland GM, Prociuk U, Wiegand N, Aguirre GD, Henthorn PS, Patterson DF, Ostrander EA (1999a) Anchoring of canine linkage groups with chromosome-specific markers. Mamm Genome 10:814–823

    Google Scholar 

  • Werner P, Raducha MG, Prociuk U, Budarf M, Henthorn PS, Patterson DF (1999b) Comparative mapping of the DiGeorge region in the dog and exclusion of linkage to inherited canine conotruncal heart defects. J Hered 90:494–498

    Google Scholar 

  • Werner P, Raducha MG, Prociuk U, Henthorn PS, Patterson DF (1999c) A comparative approach to physical and linkage mapping of genes on canine chromosomes using gene-associated simple sequence repeat polymorphisms illustrated by studies of dog chromosome 9. J Hered 90:39–42

    Google Scholar 

  • Werner P, Raducha MG, Shin D, Ostrander EA, Kirkness E, Patterson DF, Henthorn PS (2004) Assignment of 10 canine genes to the canine linkage and comparative maps. Anim Genet 35:249–251

    Google Scholar 

Download references

Acknowledgments

The research described was supported by NIH grants HL18848 and RR02512, as well as a grant from Mrs. Cheever Porter Foundation. E.A. Ostrander was supported in part by a grant from the Burroughs Wellcome Fund and P. Werner in part by a fellowship from the Robert J. and Helen C. Kleberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Werner.

Additional information

1 Nucleotide sequence data reported here are available at GenBank under accession numbers: AY438631, AY438632, AY438633, AY438634, AY438635, AY438636, AY438630

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, P., Raducha, M.G., Prociuk, U. et al. The keeshond defect in cardiac conotruncal development is oligogenic1. Hum Genet 116, 368–377 (2005). https://doi.org/10.1007/s00439-004-1242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1242-3

Keywords

Navigation