Skip to main content

Advertisement

Log in

Altered gating properties of functional Cx26 mutants associated with recessive non-syndromic hearing loss

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Connexins (Cx) form gap junctions that allow the exchange of small metabolites and ions. In the inner ear, Cx26 is the major gap junction protein and mutations in the Cx26-encoding gene, GJB2, are the most frequent cause of autosomal recessive non-syndromic hearing loss (DFNB1). We have functionally analyzed five Cx26 mutations associated with DFNB1, comprising the following single amino-acid substitutions: T8M, R143W, V153I, N206S and L214P. Coupling of cells expressing wild-type or mutant Cx26 was measured in the paired Xenopus oocyte assay. We found that the R143W, V153I and L214P mutations were unable to form functional channels. In contrast, the T8M and N206S mutants did electrically couple cells, though their voltage gating properties were different from wild-type Cx26 channels. The electrical coupling of oocytes expressing the T8M and N206S mutants suggest that these channels may retain high permeability to potassium ions. Therefore, deafness associated with Cx26 mutations may not only depend on reduced potassium re-circulation in the inner ear. Instead, abnormalities in the exchange of other metabolites through the cochlear gap junction network may also produce deafness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3a, b
Fig. 4a–f
Fig. 5a, b

Similar content being viewed by others

References

  • Barrio LC, Suchyna T, Bargiello T, Xu LX, Roginski RS, Bennett MV, Nicholson BJ (1991) Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci USA 88:8410–8414

    CAS  PubMed  Google Scholar 

  • Bayazit YA, Cable BB, Cataloluk O, Kara C, Chamberlin P, Smith RJ, Kanlikama M, Ozer E, Cakmak EA, Mumbuc S, Arslan A (2003) GJB2 gene mutations causing familial hereditary deafness in Turkey. Int J Pediatr Otorhinolaryngol 67:1331–1335

    Article  PubMed  Google Scholar 

  • Brobby GW, Muller-Myhsok B, Horstmann RD (1998) Connexin 26 R143 W mutation associated with recessive nonsyndromic sensorineural deafness in Africa. N Engl J Med 338:548–550

    Article  CAS  Google Scholar 

  • Bruzzone R, Haefliger JA, Gimlich RL, Paul DL (1993) Connexin40, a component of gap-junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell 4:7–20

    CAS  PubMed  Google Scholar 

  • Bruzzone R, Veronesi V, Gomes D, Bicego M, Duval N, Marlin S, Petit C, D’Andrea P, White TW (2003) Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett 533:79–88

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea P, Veronesi V, Bicego M, Melchionda S, Zelante L, Di Iorio E, Bruzzone R, Gasparini P (2002) Hearing loss: frequency and functional studies of the most common connexin26 alleles. Biochem Biophys Res Commun 296:685–691

    Article  CAS  PubMed  Google Scholar 

  • Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D’Agruma L, Mansfield E, Rappaport E, Govea N, Mila M, Zelante L, Gasparini P (1998) Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351:394–398

    Article  CAS  PubMed  Google Scholar 

  • Evans WH, Martin PE (2002) Gap junctions: structure and function (Review). Mol Membr Biol 19:121–136

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nickel R (2002) Connexins and gap junctions in the inner ear. Audiol Neurootol 7:141–145

    Article  CAS  PubMed  Google Scholar 

  • Hamelmann C, Amedofu GK, Albrecht K, Muntau B, Gelhaus A, Brobby GW, Horstmann RD (2001) Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 18:84–85

    Article  CAS  Google Scholar 

  • Kelley PM, Cohn E, Kimberling WJ (2000) Connexin 26: required for normal auditory function. Brain Res Brain Res Rev 32:184–188

    Article  CAS  PubMed  Google Scholar 

  • Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83

    Article  CAS  PubMed  Google Scholar 

  • Kemperman MH, Hoefsloot LH, Cremers CW (2002) Hearing loss and connexin 26. J R Soc Med 95:171–177

    Article  CAS  PubMed  Google Scholar 

  • Kenna MA, Wu BL, Cotanche DA, Korf BR, Rehm HL (2001) Connexin 26 studies in patients with sensorineural hearing loss. Arch Otolaryngol Head Neck Surg 127:1037–1042

    CAS  PubMed  Google Scholar 

  • Kenneson A, Van Naarden BK, Boyle C (2002) GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet Med.4:258–274

    Google Scholar 

  • Kikuchi T, Adams JC, Paul DL, Kimura RS (1994) Gap junction systems in the rat vestibular labyrinth: immunohistochemical and ultrastructural analysis. Acta Otolaryngol 114:520–528

    CAS  PubMed  Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:101–118

    Google Scholar 

  • Kikuchi T, Adams JC, Miyabe Y, So E, Kobayashi T (2000) Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc 33:51–56

    Article  CAS  PubMed  Google Scholar 

  • Kudo T, Kure S, Ikeda K, Xia AP, Katori Y, Suzuki M, Kojima K, Ichinohe A, Suzuki Y, Aoki Y, Kobayashi T, Matsubara Y (2003) Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum Mol Genet 12:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre PP, Van De Water TR (2000) Connexins, hearing and deafness: clinical aspects of mutations in the connexin 26 gene. Brain Res Brain Res Rev 32:159–162

    CAS  PubMed  Google Scholar 

  • Manthey D, Banach K, Desplantez T, Lee CG, Kozak CA, Traub O, Weingart R, Willecke K (2001) Intracellular domains of mouse connexin26 and −30 affect diffusional and electrical properties of gap junction channels. J Membr Biol 181:137–148

    CAS  PubMed  Google Scholar 

  • Marlin S, Garabedian EN, Roger G, Moatti L, Matha N, Lewin P, Petit C, Denoyelle F (2001) Connexin 26 gene mutations in congenitally deaf children: pitfalls for genetic counseling. Arch Otolaryngol Head Neck Surg 127:927–933

    CAS  PubMed  Google Scholar 

  • Martin PE, Coleman SL, Casalotti SO, Forge A, Evans WH (1999) Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum Mol Genet 8:2369–2376

    Article  CAS  PubMed  Google Scholar 

  • Marziano NK, Casalotti SO, Portelli AE, Becker DL, Forge A (2003) Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum Mol Genet 12:805–812

    Article  CAS  PubMed  Google Scholar 

  • Oshima A, Doi T, Mitsuoka K, Maeda S, Fujiyoshi Y (2003) Roles of Met-34, Cys-64, and Arg-75 in the assembly of human connexin 26. Implication for key amino acid residues for channel formation and function. J Biol Chem 278:1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Petit C, Levilliers J, Hardelin JP (2001) Molecular genetics of hearing loss. Annu Rev Genet 35:589–646

    Article  CAS  PubMed  Google Scholar 

  • Rabionet R, Gasparini P, Estivill X (2000) Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat 16:190–202

    Article  CAS  PubMed  Google Scholar 

  • Rabionet R, Lopez-Bigas N, Arbones ML, Estivill X (2002) Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 8:205–212

    Article  CAS  PubMed  Google Scholar 

  • Richard G, White TW, Smith LE, Bailey RA, Compton JG, Paul DL, Bale SJ (1998) Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum Genet 103:393–399

    Article  CAS  PubMed  Google Scholar 

  • Rickard S, Kelsell DP, Sirimana T, Rajput K, MacArdle B, Bitner-Glindzicz M (2001) Recurrent mutations in the deafness gene GJB2 (connexin 26) in British Asian families. J Med Genet 38:530–533

    Article  CAS  PubMed  Google Scholar 

  • Spray DC, Harris AL, Bennett MV (1981) Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol 77:77–93

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Telford D, Laird DW (2004) Functional domain mapping and selective trans-dominant effects exhibited by Cx26 disease-causing mutations. J Biol Chem 279:19157–19168

    Article  CAS  PubMed  Google Scholar 

  • Thonnissen E, Rabionet R, Arbones L, Estivill X, Willecke K, Ott T (2002) Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet 111:190–197

    Article  PubMed  Google Scholar 

  • Valiunas V, Manthey D, Vogel R, Willecke K, Weingart R (1999) Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J Physiol 519:631–644

    CAS  PubMed  Google Scholar 

  • Valiunas V, Beyer EC, Brink PR (2002) Cardiac gap junction channels show quantitative differences in selectivity. Circ Res 91:104–111

    Article  CAS  Google Scholar 

  • Wang HL, Chang WT, Li AH, Yeh TH, Wu CY, Chen MS, Huang PC (2003) Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J Neurochem 84:735–742

    Article  CAS  PubMed  Google Scholar 

  • White TW (2000) Functional analysis of human Cx26 mutations associated with deafness. Brain Res Rev 32:181–183

    Article  CAS  PubMed  Google Scholar 

  • White TW, Bruzzone R (1996) Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J Bioenerg Biomembr 28:339–350

    CAS  PubMed  Google Scholar 

  • White TW, Paul DL (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61:283–310

    Article  CAS  PubMed  Google Scholar 

  • White TW, Bruzzone R, Goodenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein Mp70. Mol Biol Cell 3:711–720

    CAS  PubMed  Google Scholar 

  • White TW, Deans MR, Kelsell DP, Paul DL (1998) Connexin mutations in deafness. Nature 394:630–631

    Article  CAS  PubMed  Google Scholar 

  • Wilcox SA, Saunders K, Osborn AH, Arnold A, Wunderlich J, Kelly T, Collins V, Wilcox LJ, McKinlay Gardner RJ, Kamarinos M, Cone-Wesson B, Williamson R, Dahl HH (2000) High frequency hearing loss correlated with mutations in the GJB2 gene. Hum Genet 106:399–405

    Article  CAS  PubMed  Google Scholar 

  • Wu BL, Lindeman N, Lip V, Adams A, Amato RS, Cox G, Irons M, Kenna M, Korf B, Raisen J, Platt O (2002) Effectiveness of sequencing connexin 26 (GJB2) in cases of familial or sporadic childhood deafness referred for molecular diagnostic testing. Genet Med 4:279–288

    Article  CAS  PubMed  Google Scholar 

  • Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Mila M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH grants DC06652 (TWW) and GM55263 (PRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meşe, G., Londin, E., Mui, R. et al. Altered gating properties of functional Cx26 mutants associated with recessive non-syndromic hearing loss. Hum Genet 115, 191–199 (2004). https://doi.org/10.1007/s00439-004-1142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1142-6

Keywords

Navigation