Skip to main content
Log in

Quasi-linkage: a confounding factor in linkage analysis of complex diseases?

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Human linkage analysis is based on the assumption that unlinked genomic loci, particularly loci located on non-homologous chromosomes, segregate independently during meiosis. An exception to this rule is the phenomenon of quasi-linkage (QL) that describes the non-random segregation of non-homologous chromosomes, which can undermine the basic concept of linkage. Molecular mechanisms of QL are not clear; however, observations in mice and plants suggest a possible affinity between non-homologous chromosomal regions containing repetitive or like sequences. QL has not been investigated in humans. As QL may generate false linkages in genome scans of complex diseases, we sought to determine whether genomic loci detected in such genome scans exhibit QL. A number of individual markers showing linkage to schizophrenia, asthma, multiple sclerosis, inflammatory bowel disease and type-1 diabetes were tested for QL in a pairwise linkage analysis against all other markers exhibiting evidence for linkage in each specific study. The Marshfield genotype dataset of eight CEPH families was used for this purpose. The best QL lod scores generated from the analysis were within the range of the “lukewarm” lod scores reported in the majority of linkage studies for complex disorders. In addition, we performed a genome-wide QL analysis on the Marshfield family database which detected eight QL lod scores >6. The replication of the best Marshfield QL scores was performed using the deCODE families and although none of the eight pairs demonstrated independent evidence for QL, three pairs generated maximal lod scores of 0.11, 0.3, and 1.51. In conclusion, although complex disease relevant markers did not produce high QL lod scores, the general phenomenon of QL in humans cannot be excluded and potentially can be a confounding factor in genetic studies of complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altmuller J, Palmer L, Fischer G, Scherb H, Wjst M (2001) Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 69:936–950

    CAS  PubMed  Google Scholar 

  • Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G, Thornquist M, Ullrich G, McGrath J, Kasch L, Lamacz M, Thomas MG, Gehrig C, Radhakrishna U, Snyder SE, Balk KG, Neufeld K, Swartz KL, DeMarchi N, Papadimitriou GN, Dikeos DG, Stefanis CN, Chakravarti A, Childs B, Pulver AE, et al (1998) Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 20:70–73

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: Individual and sex-specific variation in recombination. Am J Hum Genet 63:861–869

    CAS  PubMed  Google Scholar 

  • Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM, Pickles MR, Qin L, Fu Y, Mann JS, Kirschner BS, Jabs EW, Weber J, Hanauer SB, Bayless TM, Brant SR (1998) Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA 95:7502–7507

    CAS  PubMed  Google Scholar 

  • Concannon P, Gogolin-Ewens KJ, Hinds DA, Wapelhorst B, Morrison VA, Stirling B, Mitra M, Farmer J, Williams SR, Cox NJ, Bell GI, Risch N, Spielman RS (1998) A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nat Genet 19:292–296

    CAS  PubMed  Google Scholar 

  • Cox NJ, Wapelhorst B, Morrison VA, Johnson L, Pinchuk L, Spielman RS, Todd JA, Concannon P (2001) Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 69:820–830

    CAS  PubMed  Google Scholar 

  • Driscoll DJ, Palmer CG, Melman A (1979) Nonhomologous associations of C-heterochromatin at human male meiotic prophase. Cytogenet Cell Genet 23:23–32

    CAS  PubMed  Google Scholar 

  • Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C, Armstrong H, Cousin K, Bell RB, Hader W, Paty DW, Hashimoto S, Oger J, Duquette P, Warren S, Gray T, O’Connor P, Nath A, Auty A, Metz L, Francis G, Paulseth JE, Murray TJ, Pryse-Phillips W, Risch N (1996) A full genome search in multiple sclerosis. Nat Genet 13:472–476

    CAS  PubMed  Google Scholar 

  • Ferguson-Smith MA (1964) The sites of nucleolus formation in human pachytene chromosomes. Cytogenetics 3:124–134

    Google Scholar 

  • Green P, Falls K, Crooks S (1990) Documentation for CRI-MAP, version 2.4

  • Horvath JE, Schwartz S, Eichler EE (2000) The mosaic structure of human pericentromeric DNA: a strategy for characterizing complex regions of the human genome. Genome Res 10:839–852

    CAS  PubMed  Google Scholar 

  • Hsu TC, Cooper JE, Mace ML, Jr., Brinkley BR (1971) Arrangement of centromeres in mouse cells. Chromosoma 34:73–87

    CAS  PubMed  Google Scholar 

  • Ji Y, Eichler EE, Schwartz S, Nicholls RD (2000) Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res 10:597–610

    CAS  PubMed  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    CAS  PubMed  Google Scholar 

  • Korol AB, Preygel IA, Preygel SI (1994) Recombination Variability and Evolution: Algorithms of estimation and population-genetic models. Chapman and Hall, pp 55–70

    Google Scholar 

  • Mein CA, Esposito L, Dunn MG, Johnson GC, Timms AE, Goy JV, Smith AN, Sebag-Montefiore L, Merriman ME, Wilson AJ, Pritchard LE, Cucca F, Barnett AH, Bain SC, Todd JA (1998) A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet 19:297–300

    CAS  PubMed  Google Scholar 

  • Michie D (1953) Affinity: a new genetic phenomenon in the house mouse. Nature 171:26–27

    CAS  PubMed  Google Scholar 

  • Mike V (1977) Theories of quasi-linkage and ‘affinity’: Some implications for population structure. Proc Natl Acad Sci USA 74:3513–3517

    CAS  PubMed  Google Scholar 

  • Peng J, Korol AB, Fahima T, Roder MS, Ronin Y, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome wide coverage, massive negative interference and putative quasi-linkage. Genome Res 10:1509–1531

    CAS  PubMed  Google Scholar 

  • Satsangi J, Parkes M, Louis E, Hashimoto L, Kato N, Welsh K, Terwilliger JD, Lathrop GM, Bell JI, Jewell DP (1996) Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 14:199–202

    CAS  PubMed  Google Scholar 

  • Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, Chataway J, Robertson N, Clayton D, Goodfellow PN, Compston A (1996) A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 13:464–468

    CAS  PubMed  Google Scholar 

  • Schmid M, Vogel W, Krone W (1975) Attraction between centric heterochromatin of human chromosomes. Cytogenet Cell Genet 15:66–80

    CAS  PubMed  Google Scholar 

  • The Collaborative Study on the Genetics of Asthma (The CSGA) (1997) A genome-wide search for asthma susceptibility loci in ethnically diverse populations. Nat Genet 15:389–392

    PubMed  Google Scholar 

  • Wjst M, Fischer G, Immervoll T, Jung M, Saar K, Rueschendorf F, Reis A, Ulbrecht M, Gomolka M, Weiss EH, Jaeger L, Nickel R, Richter K, Kjellman NI, Griese M, von Berg A, Gappa M, Riedel F, Boehle M, van Koningsbruggen S, Schoberth P, Szczepanski R, Dorsch W, Silbermann M, Wichmann HE, et al (1999) A genome-wide search for linkage to asthma. German Asthma Genetics Group. Genomics 58:1–8

    CAS  PubMed  Google Scholar 

  • Xu J, Meyers DA, Ober C, Blumenthal MN, Mellen B, Barnes KC, King RA, Lester LA, Howard TD, Solway J, Langefeld CD, Beaty TH, Rich SS, Bleecker ER, Cox NJ (2001) Genomewide screen and identification of gene-gene interactions for asthma-susceptibility loci in three U.S. populations: collaborative study on the genetics of asthma. Am J Hum Genet 68:1437–1446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Andrew Paterson for his comments and suggestions. This work was supported by grants from the Ontario Mental Health Foundation, the National Alliance for Research in Schizoprhenia and Depression to A.P.. M.L. is supported by a Genome Canada grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturas Petronis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivagnanasundaram, S., Broman, K.W., Liu, M. et al. Quasi-linkage: a confounding factor in linkage analysis of complex diseases?. Hum Genet 114, 588–593 (2004). https://doi.org/10.1007/s00439-004-1109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1109-7

Keywords

Navigation