Skip to main content

Advertisement

Log in

PA26 is a candidate gene for heterotaxia in humans: identification of a novel PA26-related gene family in human and mouse

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Heterotaxia is an aetiologically heterogeneous condition caused by an abnormal left-right axis formation, resulting in reversed left-right polarity of one or more organ systems. In a patient with heterotaxia and a de novo reciprocal translocation t(6;18)(q21;q21), we found that the PA26 gene was disrupted by the 6q21 breakpoint. Northern blot analysis showed decreased expression of the PA26 gene in an Epstein-Barr virus-transformed cell line of this patient. During early embryogenesis of Xenopus, the orthologue of PA26, XPA26 is exclusively expressed in the notochord, a midline structure. This further supports a possible role of PA26 in human situs determination. Mutation analysis of human PA26 gene in 40 unrelated individuals with unexplained heterotaxia failed to identify mutations, indicating that PA26 mutations are not a frequent cause of heterotaxia in humans. Analysis of the PA26 gene structure resulted in the identification of a novel PA26-related gene family, which we have named the sestrin family, and which comprises three closely related genes in human and in mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3A–F.
Fig. 4A, B.

Similar content being viewed by others

References

  • Bamford RN, Roessler E, Burdine RD, Saplakoglu U, Cruz J dela, Splitt M, Goodship JA, Towbin J, Bowers P, Ferrero GB, Marino B, Schier AF, Shen MM, Muenke M, Casey B (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 26:365–369

    PubMed  Google Scholar 

  • Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209

    CAS  PubMed  Google Scholar 

  • Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, Gorodin S, Fishman A, Chajut A, Einat P, Skaliter R, Gudkov AV, Chumakov PM, Feinstein E (2002) Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 21:6017–6031

    Article  CAS  PubMed  Google Scholar 

  • Casey B, Devoto M, Jones KL, Ballabio A (1993) Mapping a gene for familial situs abnormalities to human chromosome Xq24–q27.1. Nat Genet 5:403–407

    CAS  PubMed  Google Scholar 

  • Collins FS (1995) Positional cloning moves from perditional to traditional. Nat Genet 9:347–350

    CAS  PubMed  Google Scholar 

  • Danos MC, Yost HJ (1996) Role of notochord in specification of cardiac left-right orientation in zebrafish and Xenopus. Dev Biol 177:96–103

    Article  CAS  PubMed  Google Scholar 

  • Devilee P, Cremer T, Slagboom P, Bakker E, Scholl HP, Hager HD, Stevenson AF, Cornelisse CJ, Pearson PL (1986) Two subsets of human alphoid repetitive DNA show distinct preferential localization in the pericentric regions of chromosomes 13, 18, and 21. Cytogenet Cell Genet 41:193–201

    CAS  PubMed  Google Scholar 

  • Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A, Penman-Splitt M, Bird LM, Bamforth JS, Burn J, Schlessinger D, Nelson DL, Casey B (1997) X-linked situs abnormalities result from mutations in ZIC3. Nat Genet 17:305–308

    PubMed  Google Scholar 

  • Gustavsson P, Kimber E, Wahlstrom J, Anneren G (1999) Monosomy 18q syndrome and atypical Rett syndrome in a girl with an interstitial deletion (18)(q21.1q22.3). Am J Med Genet 82:348–351

    Google Scholar 

  • Hikasa H, Taira M (2001) A Xenopus homolog of a human p53-activated gene, PA26, is specifically expressed in the notochord. Mech Dev 100:309–312

    Article  CAS  PubMed  Google Scholar 

  • Kato R, Yamada Y, Niikawa N (1996) De novo balanced translocation (6;18)(q21;q21.3 or q22) [corrected] in a patient with heterotaxia. Am J. Med Genet 66:184–186

    Article  CAS  Google Scholar 

  • Kato R, Matsumoto N, Fujimoto M, Nakano M, Nakamura Y, Niikawa N (1997) Fish mapping of a translocation breakpoint at 6q21 (or q22) in a patient with heterotaxia. Jpn J Hum Genet 42:525–532

    CAS  PubMed  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    CAS  PubMed  Google Scholar 

  • Kodjabachian L, Karavanov AA, Hikasa H, Hukriede NA, Aoki T, Taira M, Dawid IB (2001) A study of Xlim1 function in the Spemann-Mangold organizer. Int J Dev Biol 45:209–218

    CAS  PubMed  Google Scholar 

  • Kosaki K, Bassi MT, Kosaki R, Lewin M, Belmont J, Schauer G, Casey B (1999a) Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet 64:712–721

    PubMed  Google Scholar 

  • Kosaki R, Gebbia M, Kosaki K, Lewin M, Bowers P, Towbin JA, Casey B (1999b) Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 82:70–76

    Article  PubMed  Google Scholar 

  • Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814

    CAS  PubMed  Google Scholar 

  • Pagan-Westphal SM, Tabin CJ (1998) The transfer of left-right positional information during chick embryogenesis. Cell 93:25–35

    PubMed  Google Scholar 

  • Peeters H, Debeer P, Groenen P, Van Esch H, Vanderlinden G, Eyskens B, Mertens L, Gewillig M, Van de Ven W, Fryns JP, Devriendt K (2001) Recurrent involvement of chromosomal region 6q21 in heterotaxy. Am J Med Genet 103:44–47

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer D, Kist R, Dewar K, Devon K, Lander ES, Birren B, Korniszewski L, Back E, Scherer G (1999) Campomelic dysplasia translocation breakpoints are scattered over 1 Mb proximal to SOX9: evidence for an extended control region. Am J Hum Genet 65:111–124

    CAS  PubMed  Google Scholar 

  • Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H (2001) The HUGO Gene Nomenclature Committee (HGNC). Hum Genet 109:678–680

    CAS  PubMed  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz I Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, et al (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76:761–775

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press,Cold Spring Harbor, NY

    Google Scholar 

  • Schinzel A (2001) Catalogue of unbalanced chromosome aberrations in man, 2nd edition. De Gruyter, Berlin New York

  • Silverman GA, Schneider SS, Massa HF, Flint A, Lalande M, Leonard JC, Overhauser J, Engh G van den, Trask BJ (1995) The 18q− syndrome: analysis of chromosomes by bivariate flow karyotyping and the PCR reveals a successive set of deletion breakpoints within 18q21.2-q22.2. Am J Hum Genet 56:926–937

    CAS  PubMed  Google Scholar 

  • Strathdee G, Zackai EH, Shapiro R, Kamholz J, Overhauser J (1995) Analysis of clinical variation seen in patients with 18q terminal deletions. Am J Med Genet 59:476–483

    CAS  PubMed  Google Scholar 

  • Tsang TE, Kinder SJ, Tam PP (1999) Experimental analysis of the emergence of left-right asymmetry of the body axis in early postimplantation mouse embryos. Cell Mol Biol (Noisy-le-grand) 45:493–503

    Google Scholar 

  • Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N (1999) PA26, a novel target of the p53 tumour suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 18:127–137

    Article  CAS  PubMed  Google Scholar 

  • Wright CV (2001) Mechanisms of left-right asymmetry: what's right and what's left? Dev Cell 1:179–186

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Reinhilde Thoelen for excellent technical assistance. K.D. is a senior clinical investigator and H.P. is a Research Assistant of the Fund for Scientific Research, Flanders, Belgium (FWO-Vlaanderen). This work was supported by grants from Inter-Universitary Attraction Poles (Belgian State) and the Belgian Foundation for Research in Pediatric Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Devriendt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeters, H., Debeer, P., Bairoch, A. et al. PA26 is a candidate gene for heterotaxia in humans: identification of a novel PA26-related gene family in human and mouse. Hum Genet 112, 573–580 (2003). https://doi.org/10.1007/s00439-003-0917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-003-0917-5

Keywords

Navigation