Skip to main content
Log in

Genome-wide targeted search for human specific and polymorphic L1 integrations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Retroelements (REs) occupy up to 40% of the human genome. Newly integrated REs can change the pattern of expression of pre-existing host genes and therefore might play a significant role in evolution. In particular, human- and primate-specific REs could affect the divergence of the Hominoidea superfamily. A comparative genome-wide analysis of RE sites of integration, neighboring genes, and their regulatory interplay in human and ape genomes would be of help in understanding the impact of REs on evolution and genome regulation. We have developed a technique for the genome-wide comparison of the integrations of transposable elements in genomic DNAs of closely related species. The technique called targeted genome differences analysis (TGDA) is also useful for the detection of deletion/insertion polymorphisms of REs. The technique is based on an enhanced version of subtractive hybridization and does not require preliminary knowledge of the genome sequences under comparison. In this report, we describe its application to the detection and analysis of human specific L1 integrations and their polymorphisms. We obtained a library highly enriched in human-specific L1 insertions and identified 24 such new insertions. Many of these insertions are polymorphic in human populations. The total number of human-specific L1 inserts was estimated to be ~4000. The results suggest that TGDA is a universal method that can be successfully used for the detection of evolutionary and polymorphic markers in any closely related genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Boissinot S, Chevret P, Furano AV (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17:915–928

    CAS  PubMed  Google Scholar 

  • Brooks EM, Branda RF, Nicklas JA, O'Neill JP (2001) Molecular description of three macro-deletions and an Alu-Alu recombination-mediated duplication in the HPRT gene in four patients with Lesch-Nyhan disease. Mutat Res 476:43–54

    Article  CAS  PubMed  Google Scholar 

  • Buzdin A, Khodosevich K, Mamedov I, Vinogradova T, Lebedev Y, Hunsmann G, Sverdlov E (2002a) A technique for genome-wide identification of differences in the interspersed repeats integrations between closely related genomes and its application to detection of human-specific integrations of HERV-K LTRs. Genomics 79:413–422

    Article  CAS  PubMed  Google Scholar 

  • Buzdin A, Ustyugova S, Gogvadze E, Vinogradova T, Lebedev Y, Sverdlov E (2002b) A new family of chimeric retrotranscripts formed by a full copy of u6 small nuclear RNA fused to the 3' terminus of L1. Genomics 80:402–406

    Article  CAS  PubMed  Google Scholar 

  • Carroll ML, Roy-Engel AM, Nguyen SV, Salem AH, Vogel E, Vincent B, Myers J, Ahmad Z, Nguyen L, Sammarco M, Watkins WS, Henke J, Makalowski W, Jorde LB, Deininger PL, Batzer MA (2001) Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol 311:17–40

    Article  CAS  PubMed  Google Scholar 

  • Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193

    CAS  PubMed  Google Scholar 

  • Goodier JL, Ostertag EM, Kazazian HH Jr (2000) Transduction of 3'-flanking sequences is common in L1 retrotransposition. Hum Mol Genet 9:653–657

    Article  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Kazazian HH Jr (2000) Genetics. L1 retrotransposons shape the mammalian genome. Science 289:1152–1153

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Moran JV (1998) The impact of L1 retrotransposons on the human genome. Nat Genet 19:19–24

    CAS  PubMed  Google Scholar 

  • Lavrentieva I, Broude NE, Lebedev Y, Gottesman II, Lukyanov SA, Smith Cl, Sverdlov ED (1999) High polymorphism level of genomic sequences flanking insertion sites of human endogenous retroviral long terminal repeats. FEBS Lett 443:341–347

    Article  CAS  PubMed  Google Scholar 

  • Lebedev Y, Belonovich O, Zybrova N, Khil P, Kurdyukov S, Vinogradova T, Hunsmann G, Sverdlov E (2000) Differences in HERV-K LTR insertions in orthologous loci of human and great apes. Gene 247:265–277

    Article  CAS  PubMed  Google Scholar 

  • Lower R (1999) The pathogenic potential of endogenous retroviruses: facts and fantasies. Trends Microbiol 7:350–356

    Article  CAS  PubMed  Google Scholar 

  • Medstrand P, Mager DL (1998) Human-specific integrations of the HERV-K endogenous retrovirus family. J Virol 72:9782–9787

    CAS  PubMed  Google Scholar 

  • Meischl C, Boer M, Ahlin A, Roos D (2000) A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 8:697–703

    CAS  PubMed  Google Scholar 

  • Moran JV (1999) Human L1 retrotransposition: insights and peculiarities learned from a cultured cell retrotransposition assay. Genetica 107:39–51

    Article  CAS  PubMed  Google Scholar 

  • Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283:1530–1534

    Article  CAS  PubMed  Google Scholar 

  • Myers JS, Vincent BJ, Udall H, Watkins WS, Morrish TA, Kilroy GE, Swergold GD, Henke J, Henke L, Moran JV, Jorde LB, Batzer MA (2002) A comprehensive analysis of recently integrated human Ta L1 elements. Am J Hum Genet 71:312–326

    Article  CAS  PubMed  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 11:2059–2065

    Article  CAS  PubMed  Google Scholar 

  • Ovchinnikov I, Troxel AB, Swergold GD (2001) Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. Genome Res 11:2050–2058

    Article  CAS  PubMed  Google Scholar 

  • Pickeral OK, Makalowski W, Boguski MS, Boeke JD (2000) Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res 10:411–415

    CAS  PubMed  Google Scholar 

  • Saikawa Y, Kaneda H, Yue L, Shimura S, Toma T, Kasahara Y, Yachie A, Koizumi S (2000) Structural evidence of genomic exon-deletion mediated by Alu-Alu recombination in a human case with heme oxygenase-1 deficiency. Hum Mutat 16:178–179

    CAS  Google Scholar 

  • Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, Duijnhoven G van, Kirschner R, Hemberger M, Bergen AA, Rosenberg T, Pinckers AJ, Fundele R, Rosenthal A, Cremers FP, Ropers HH, Berger W (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19:327–332

    Google Scholar 

  • Sheen FM, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M, Batzer MA, Swergold GD (2000) Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res 10:1496–1508

    Article  CAS  PubMed  Google Scholar 

  • Smit AF, Toth G, Riggs AD, Jurka J (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246:401–417

    Article  CAS  PubMed  Google Scholar 

  • Turner G, Barbulescu M, Su M, Jensen-Seaman MI, Kidd KK, Lenz J (2001) Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol 11:1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Victor Potapov and Dr. Nadezhda Skaptsova (Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia) for synthesis of oligonucleotides, and Dr. Boris Glotov (Institute of Molecular Genetics, Moscow, Russia) for invaluable comments to the manuscript. This work was supported by contract 43.073.1.1.2508 of the Ministry of Industry, Science and Technology of the Russian Federation and by an INTAS-01–0759 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Buzdin.

Additional information

Electronic database information: accession numbers are as follows:

AF496637–AF496654

AF512797–AF512807

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzdin, A., Ustyugova, S., Gogvadze, E. et al. Genome-wide targeted search for human specific and polymorphic L1 integrations. Hum Genet 112, 527–533 (2003). https://doi.org/10.1007/s00439-002-0904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-002-0904-2

Keywords

Navigation