Skip to main content
Log in

Compound heterozygosity at the sphingomyelin phosphodiesterase-1 (SMPD1) gene is associated with low HDL cholesterol

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Type A and B forms of Niemann-Pick disease (NPD) are lipid storage disorders caused by deficient activity of the enzyme acid sphingomyelinase (aSMase) and the resulting accumulation of sphingomyelin in tissues. In the present study, we investigated two family members who had been diagnosed with Type B NPD and who had a severe decrease in plasma high density lipoprotein cholesterol (HDL-C). The proband (a 48-year-old male) had an HDL-C of 0.30 mmol/l (12 mg/dl) and his sister had values of 0.45 mmol/l (17 mg/dl) with severe premature coronary artery disease (CAD). Hypertriglyceridemia was found in both cases. aSMase activity measured in skin fibroblasts appeared markedly depressed. The SMPD1 gene, coding for aSMase, was sequenced in affected subjects and all family members. Compound heterozygosity (ΔR608 and R441X) was identified in both affected patients. Carriers of the ΔR608 mutation tended to have moderately to severe decreased HDL-C levels, whereas carriers of the R441X mutation, although present only in young subjects (<20 years of age) had normal HDL-C levels. To investigate the cause of the low HDL-C level in these patients, we studied apoA-I-mediated cellular cholesterol efflux in fibroblasts. Unlike patients with Tangier disease, cholesterol efflux was found to be normal under the experimental conditions used in the present study. On the other hand, we observed a significant increase in the free cholesterol:esterified cholesterol ratio in HDL fraction from these patients and a decrease in endogenous lecithin-cholesterol acyltransferase (LCAT) activity, as determined by the fractional esterification rate. Taken together, these results suggest that (1) compound heterozygosity at the SMPD1 gene causes a severe decrease in aSMase activity and in HDL-C and increases the risk of CAD, (2) this lipoprotein abnormality is not attributable to defective cellular cholesterol efflux, (3) abnormal HDL composition might cause a decrease in LCAT activity and a lack of HDL maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Arranz-Pena M-L, Tasende-Mata J, Martin-Gil FJ (1998) Comparison of two homogeneous assays with a precipitation method and an ultracentrifugation method for the measurement of HDL-cholesterol. ClinChem 44:2499–2505

    CAS  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  Google Scholar 

  • Batal R, Tremblay M, Krimbou L, Mamer O, Davignon J, Genest J Jr, Cohn JS (1998) Familial HDL deficiency characterized by hypercatabolism of mature apoA-I but not proapoA-I. Arterioscler Thromb Vasc Biol 18:655–664

    CAS  PubMed  Google Scholar 

  • Bolin DJ, Jonas A (1996) Sphingomyelin inhibits the lecithin-cholesterol acyltransferase reaction with reconstituted high density lipoproteins by decreasing enzyme binding. J Biol Chem 271:19152–19158

    Article  CAS  PubMed  Google Scholar 

  • Brady RO (1966) The sphingolipidoses. N Engl J Med 275:312–318

    CAS  PubMed  Google Scholar 

  • Brady RO (1978) Sphingomyelin lipidosis: Niemann-Pick disease. In: Stanbury JB, Wyngaarden JB, Fredrickson DS (eds) Metabolic basis of inherited disease, 4th edn. McGraw-Hill, New York, pp 718–730

  • Brady RO, Kanfer JN, Mock MB, Fredrickson DS (1966) The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick disease. Proc Natl Acad Sci USA 55:366–369

    CAS  PubMed  Google Scholar 

  • Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J Jr, Hayden MR (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    CAS  PubMed  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Tagle DA (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    CAS  PubMed  Google Scholar 

  • Crocker AC (1961) The cerebral defect in Tay-Sachs disease and Niemann-Pick disease. J Neurochem 7:69–80

    CAS  Google Scholar 

  • Crocker AC, Farber S (1958) Niemann-Pick disease: a review of eighteen patients. Medicine 37:1–95

    CAS  Google Scholar 

  • Cruz JC, Sugii S, Yu C, Chang TY (2000) Role of Niemann-Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol. J Biol Chem 275:4013–4021

    CAS  PubMed  Google Scholar 

  • Davignon J, Genest J Jr (1998) Genetics of lipoprotein disorders. Endocrinol Metab Clin North Am 27:521–550

    CAS  PubMed  Google Scholar 

  • Eckardstein A von, Huang Y, Wu S, Funke H, Noseda G, Assmann G (1995) Reverse cholesterol transport in plasma of patients with different forms of familial HDL deficiency. Arterioscler Thromb Vasc Biol 15:691–703

    PubMed  Google Scholar 

  • Elleder M, Cihula J (1983) Niemann-Pick disease (variation in the sphingomyelinase deficient group). Neurovisceral phenotype (A) with an abnormally protracted clinical course and variable expression of neurological symptomatology in three siblings. Eur J Pediatr 140:323–328

    CAS  PubMed  Google Scholar 

  • Emmerich J, Verges B, Tauveron I, Rader D, Santamarina-Fojo S, Shaefer J, Ayrault-Jarrier M, Thieblot P, Brewer HB Jr (1993) Familial HDL deficiency due to marked hypercatabolism of normal apoA-I. Arterioscler Thromb 13:1299–1306

    CAS  PubMed  Google Scholar 

  • Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ (2000) A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 39:14113–14120

    Article  CAS  PubMed  Google Scholar 

  • Francis GA, Knopp RH, Oram JF (1995) Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier disease. J Clin Invest 96:78–87

    CAS  PubMed  Google Scholar 

  • Genest J Jr (2002) Genetics and prevention: a new look at high-density lipoprotein cholesterol. Cardiol Rev 10:61–71

    PubMed  Google Scholar 

  • Genest J Jr, McNamara JR, Salem DN, Schaefer EJ (1991) Prevalence of risk factors in men with premature coronary artery disease. Am J Cardiol 67:1185–1189

    CAS  PubMed  Google Scholar 

  • Genest J Jr, Bard JM, Fruchart JC, Ordovas JM, Schaefer EJ (1993) Familial hypoalphalipoproteinemia in premature coronary artery disease. Arterioscler Thromb 13:1728–1737

    PubMed  Google Scholar 

  • Greer WL, Riddell DC, Gillan TL, Girouard GS, Sparrow SM, Byers DM, Dobson MJ, Neumann PE (1998) The Nova Scotia (type D) form of Niemann-Pick disease is caused by a G3097→T transversion in NPC1. Am J Hum Genet 63:52–54

    CAS  PubMed  Google Scholar 

  • Haghpassand M, Bourassa PA, Francone OL, Aiello RJ (2001) Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J Clin Invest 108:1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Krimbou L, Tremblay M, Jacques H, Davignon J, Cohn JS (1998) In vitro factors affecting the concentration of gamma-LpE (gamma-LpE) in human plasma. J Lipid Res 39:861–872

    CAS  PubMed  Google Scholar 

  • Krimbou L, Marcil M, Davignon J, Genest J Jr (2001) Interaction of lecithin:cholesterol acyltransferase (LCAT) alpha 2-macroglobulin complex with low density lipoprotein receptor-related protein (LRP). Evidence for an alpha 2-macroglobulin/LRP receptor-mediated system participating in LCAT clearance. J Biol Chem 276:33241–33248

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Shirk A, Oram JF, Lee SP, Kuver R (2002) Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway. Biochem J 364:475–484

    Article  CAS  PubMed  Google Scholar 

  • Leventhal AR, Chen W, Tall AR, Tabas I (2001) Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux. J Biol Chem 276:44976–44983

    Article  CAS  PubMed  Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1990) Identification of the first mutation in Niemann-Pick types A and B disease, a common point mutation in the Ashkenazi Jewish population. Am J Hum Genet 47 (suppl):A162

    Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1991) Niemann-Pick type B disease. Identification of a single codon deletion in the acid sphingomyelinase gene and genotype/phenotype correlations in type A and B patients. J Clin Invest 88:806–810

    CAS  PubMed  Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1993) Type A Niemann-Pick disease: a frameshift mutation in the acid sphingomyelinase gene (fsP330) occurs in Ashkenazi Jewish patients. Hum Mutat 2:317–319

    CAS  PubMed  Google Scholar 

  • Liscum L (2000) Niemann-Pick type C mutations cause lipid traffic jam. Trafficking 1:218–225

    Article  CAS  Google Scholar 

  • Liscum L, Ruggiero RM, Faust JR (1989) The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts. J Cell Biol 108:1625–1636

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagents. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lynn R, Terry RD (1964) Lipid histochemistry and electron microscopy in adult Niemann-Pick disease. Am J Med 37:987–994

    CAS  Google Scholar 

  • Marcil M, Boucher B, Krimbou L, Solymoss BC, Davignon J, Frohlich J, Genest J Jr (1995) Severe familial HDL deficiency in French-Canadian kindreds. Clinical, biochemical, and molecular characterization. Arterioscler Thromb Vasc Biol 15:1015–1024

    CAS  PubMed  Google Scholar 

  • Marcil M, Brooks-Wilson A, Clee SM, Roomp K, Zhang LH, Yu L, Collins JA, Dam M van, Molhuizen HO, Loubster O, Ouellette BF, Sensen CW, Fichter K, Mott S, Denis M, Boucher B, Pimstone S, Genest J Jr, Kastelein JJ, Hayden MR (1999a) Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet 354:1341–1346

    CAS  PubMed  Google Scholar 

  • Marcil M, Yu L, Krimbou L, Boucher B, Oram JF, Cohn JS, Genest J Jr (1999b) Cellular cholesterol transport and efflux in fibroblasts are abnormal in subjects with familial HDL deficiency. Arterioscler Thromb Vasc Biol 19:159–169

    CAS  PubMed  Google Scholar 

  • NCEP (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285:2486–2497

    PubMed  Google Scholar 

  • Neufeld EB, Cooney AM, Pitha J, Dawidowicz EA, Dwyer NK, Pentchev PG, Blanchette-Mackie EJ (1996) Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 271:21604–21613

    Article  CAS  PubMed  Google Scholar 

  • NIH (1980) The Lipid Research Clinics Population Studies Data Book, vol 1. The prevalence study. NIH publication 80–1527. Department of Health and Human Services, Public Health Service, Washington DC, pp 28–81

  • Oram JF (2002) Molecular basis of cholesterol homeostasis: lessons from Tangier disease and ABCA1. Trends Mol Med 8:168–173

    Article  CAS  PubMed  Google Scholar 

  • Pfaendler U (1953) Nouvelles conceptions sur l'hérédité et la pathogénie de la maladie de Niemann-Pick. Helv Med Acta 20:216–241

    Google Scholar 

  • Quintern LE, Schuchman EH, Levran O, Suchi M, Ferlinz K, Reinke H, Sandhoff K, Desnick RJ (1989) Isolation of cDNA clones encoding human acid sphingomyelinase: occurrence of alternatively processed transcripts. EMBO J 8:2469–2473

    CAS  PubMed  Google Scholar 

  • Rashid S, Barrett PH, Uffelman KD, Watanabe T, Adeli K, Lewis GF (2002) Lipolytically modified triglyceride-enriched HDLs are rapidly cleared from the circulation. Arterioscler Thromb Vasc Biol 22:483–487

    Article  CAS  PubMed  Google Scholar 

  • Remaley AT, Stonik JA, Demosky SJ, Neufeld EB, Bocharov AV, Vishnyakova TG, Eggerman TL, Patterson AP, Duverger NJ, Santamarina-Fojo S, Brewer HB Jr (2001) Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochem Biophys Res Commun 280:818–823

    Article  CAS  PubMed  Google Scholar 

  • Rogler G, Trumbach B, Klima B, Lackner KJ, Schmitz G (1995) HDL-mediated efflux of intracellular cholesterol is impaired in fibroblasts from Tangier disease patients. Arterioscler Thromb Vasc Biol 15:683–690

    CAS  PubMed  Google Scholar 

  • Rozen S (2002) Primer3. Code available at http://www-genome.wi.mit.edu/genome_software/other/primer3.html

  • Rye KA, Hime NJ, Barter PJ (1996) The influence of sphingomyelin on the structure and function of reconstituted high density lipoproteins. J Biol Chem 271:4243–4250

    Article  CAS  PubMed  Google Scholar 

  • Salacinski PR, McLean C, Sykes JE, Clement-Jones VV, Lowry PJ (1981) Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem 117:136–146

    CAS  PubMed  Google Scholar 

  • Schissel SL, Schuchman EH, Williams KJ, Tabas I (1996) Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 271:18431–18436

    Article  CAS  PubMed  Google Scholar 

  • Schissel SL, Keesler GA, Schuchman EH, Williams KJ, Tabas I (1998) The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273:18250–18259

    Article  CAS  PubMed  Google Scholar 

  • Schuchman EH (1995) Two new mutations in the acid sphingomyelinase gene causing type a Niemann-pick disease: N389T and R441X. Hum Mutat 6:352–354

    CAS  PubMed  Google Scholar 

  • Schuchman EH, Desnick RJ (1995) Niemann-Pick diseases types A and B: acid sphingomyelinase deficiencies. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edn. McGraw-Hill, New York, pp 2601–2624

  • Schuchman EH, Miranda SR (1997) Niemann-Pick disease: mutation update, genotype/phenotype correlations, and prospects for genetic testing. Genet Test 1:13–19

    CAS  PubMed  Google Scholar 

  • Schuchman EH, Levran O, Pereira LV, Desnick RJ (1992) Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics 12:197–205

    CAS  PubMed  Google Scholar 

  • Simonaro CM, Desnick RJ, McGovern MM, Wasserstein MP, Schuchman EH (2002) The demographics and distribution of type B Niemann-Pick disease: novel mutations lead to new genotype/phenotype correlations. Am J Hum Genet 71:000-000

    Article  CAS  Google Scholar 

  • Subbaiah PV, Liu M (1993) Role of sphingomyelin in the regulation of cholesterol esterification in the plasma lipoproteins. Inhibition of lecithin-cholesterol acyltransferase reaction. J Biol Chem 268:20156–20163

    CAS  PubMed  Google Scholar 

  • Terry RD, Sperry WM, Brodoff B (1954) Adult lipidosis resembling Niemann-Pick's disease. Am J Pathol 30:263–285

    CAS  Google Scholar 

  • Vanier MT, Ferlinz K, Rousson R, Duthel S, Louisot P, Sandhoff K, Suzuki K (1993) Deletion of arginine (608) in acid sphingomyelinase is the prevalent mutation among Niemann-Pick disease type B patients from northern Africa. Hum Genet 92:325–330

    CAS  PubMed  Google Scholar 

  • Veiga PL da, Desnick RJ, Adler DA, Disteche CM, Schuchman EH (1991) Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1→p15.4. Genomics 9:229–234

    PubMed  Google Scholar 

  • Viana MB, Giugliani R, Leite VH, Barth ML, Lekhwani C, Slade CM, Fensom A (1990) Very low levels of high density lipoprotein cholesterol in four sibs of a family with non-neuropathic Niemann-Pick disease and sea-blue histiocytosis. J Med Genet 27:499–504

    CAS  PubMed  Google Scholar 

  • Zou L, Kojima N, Kito M, Yagi K (1989) Purification to homogeneity of human placental acid sphingomyelinase. Biotechnol Appl Biochem 11:217–225

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants MOP 15042 and DOP 40485 from the Canadian Institute of Health Research (CIHR) and an unrestricted grant from Pfizer Pharmaceutical (Ann Arbour, Mich.) in the context of a CIHR-Industry partnership (J.G.Jr). J.G.Jr occupies the McGill-Novartis/CIHR Chair in Medicine at McGill University. We thank M. Raposo, D. Gauthier, Dr. C. Lazure (Clinical Research Institute of Montreal), and B. Boucher (McGill University) for technical assistance. We are also grateful to the participants of the study family for their kind support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Marcil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.Y., Krimbou, L., Vincent, J. et al. Compound heterozygosity at the sphingomyelin phosphodiesterase-1 (SMPD1) gene is associated with low HDL cholesterol. Hum Genet 112, 552–562 (2003). https://doi.org/10.1007/s00439-002-0893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-002-0893-1

Keywords

Navigation