Skip to main content

Advertisement

Log in

SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract.

The type IV Waardenburg syndrome (WS4), also referred to as Shah-Waardenburg syndrome or Waardenburg-Hirschsprung disease, is characterised by the association of Waardenburg features (WS, depigmentation and deafness) and the absence of enteric ganglia in the distal part of the intestine (Hirschsprung disease). Mutations in the EDN3, EDNRB, and SOX10 genes have been reported in this syndrome. Recently, a new SOX10 mutation was observed in a girl with a neural crest disorder without evidence of depigmentation, but with severe constipation due to a chronic intestinal pseudo-obstruction and persistence of enteric ganglia. To refine the nosology of WS, we studied patients with typical WS4 (including Hirschsprung disease) or with WS and intestinal pseudo-obstruction. We found three SOX10 mutations, one EDNRB and one EDN3 mutations in patients presenting with the classical form of WS4, and two SOX10 mutations in patients displaying chronic intestinal pseudo-obstruction and WS features. These results show that chronic intestinal pseudo-obstruction may be a manifestation associated with WS, and indicate that aganglionosis is not the only mechanism underlying the intestinal dysfunction of patients with SOX10 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pingault, V., Girard, M., Bondurand, N. et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet 111, 198–206 (2002). https://doi.org/10.1007/s00439-002-0765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-002-0765-8

Keywords

Navigation