Skip to main content

Presence of fetal DNA in maternal plasma decades after pregnancy


Cells of fetal origin and cell-free fetal DNA can be detected in the maternal circulation during pregnancy, and it has recently been shown that fetal cells can persist long after delivery. Given the various biological and clinical implications of this fact, we tested the hypothesis that cell-free fetal DNA can be present in maternal plasma decades after pregnancy. We extracted DNA from plasma samples and nucleated blood cells of 160 healthy women with male offspring at different time intervals after delivery (range 1–60 years). All of the samples were tested by means of a real-time quantitative PCR assay for a specific Y chromosome sequence (the SRY gene). Y chromosome-specific DNA was detected in 16 peripheral blood cell samples (10%) and 35 plasma samples (22%). The women with male sequences in the cell fraction had significantly greater total parity (P=0.018). The proportion of women with detectable Y sequences in the plasma or cell samples was not related to the time since delivery. The fetal DNA concentrations in the genomic material extracted from plasma samples were significantly higher than those extracted from the Y-positive cell samples (149±140 vs 20±13 genome-equivalents/ml; P<0.001). There was no relationship between the concentration of fetal DNA and the time since delivery. Not only fetal cells, but also fragments of fetal DNA can be present in the maternal circulation indefinitely after pregnancy. This finding has practical implications for non-invasive prenatal diagnoses based on maternal blood, and may be considered for possible pathophysiological correlations.

This is a preview of subscription content, access via your institution.

Author information

Authors and Affiliations


Additional information

Electronic Publication

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Invernizzi, P., Biondi, M., Battezzati, P. et al. Presence of fetal DNA in maternal plasma decades after pregnancy. Hum Genet 110, 587–591 (2002).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Primary Biliary Cirrhosis
  • Maternal Plasma
  • Fetal Cell
  • Maternal Circulation
  • Fetal Microchimerism