Skip to main content
Log in

lncCPSET1 acts as a scaffold for MLL2/COMPASS to regulate Bmp4 and promote the formation of chicken primordial germ cells

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Primordial germ cells (PGCs) are the ancestors of female and male germ cells. Recent studies have shown that long non-coding RNA (lncRNA) and histone methylation are key epigenetic factors affecting PGC formation; however, their joint regulatory mechanisms have rarely been studied. Here, we explored the mechanism by which lncCPSET1 and H3K4me2 synergistically regulate the formation of chicken PGCs for the first time. Combined with chromatin immunoprecipitation (CHIP) sequencing and RNA-seq of PGCs transfected with the lncCPSET1 overexpression vector, GO annotation and KEGG enrichment analysis revealed that Wnt and TGF-β signaling pathways were significantly enriched, and Fzd2, Id1, Id4, and Bmp4 were identified as candidate genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that ASH2L, DPY30, WDR5, and RBBP5 overexpression significantly increased the expression of Bmp4, which was up-regulated after lncCPSET1 overexpression as well. It indicated that Bmp4 is a target gene co-regulated by lncCPSET1 and MLL2/COMPASS. Interestingly, co-immunoprecipitation results showed that ASH2L, DPY30 and WDR5 combined and RBBP5 weakly combined with DPY30 and WDR5. lncCPSET1 overexpression significantly increased Dpy30 expression and co-immunoprecipitation showed that interference/overexpression of lncCPSET1 did not affect the binding between the proteins in the complexes, but interference with lncCPSET1 inhibited DPY30 expression, which was confirmed by RNA immunoprecipitation that lncCPSET1 binds to DPY30. Additionally, CHIP-qPCR results showed that DPY30 enriched in the Bmp4 promoter region promoted its transcription, thus promoting the formation of PGCs. This study demonstrated that lncCPSET1 and H3K4me2 synergistically promote PGC formation, providing a reference for the study of the regulatory mechanisms between lncRNA and histone methylation, as well as a molecular basis for elucidating the formation mechanism of PGCs in chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aflatoonian B, Moore H (2006) Germ cells from mouse and human embryonic stem cells. Reproduction 132(5):699–707

    Article  CAS  PubMed  Google Scholar 

  • Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka IR (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2):183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  • Bialecka M, Young T, Chuva de Sousa Lopes S, Berge D, Sanders A, Beck F, Deschamps J (2012) Cdx2 contributes to the expansion of the early primordial germ cell population in the mouse. Dev Biol 371(2):227–234

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wan B, Wang KC, Cao F, Yang Y, Protacio A, Dou Y, Chang HY, Lei M (2011) Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding. EMBO Rep 12(8):797–803

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Xie W, Gu P, Cai Q, Wang B, Xie Y, Dong W, He W, Zhong G, Lin T, Huang J (2015) Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation. Sci Rep 5:8293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove MS, Patel A (2010) Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J 277(8):1832–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Sousa Lopes SMC, Roelen BAJ, Monteiro RM et al (2004) BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo[J], vol 18. Genes & Development, pp 1838–1849. 15

  • Dharmarajan V, Lee JH, Patel A, Skalnik DG, Cosgrove MS (2012) Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases. J Biol Chem 287(33):27275–27289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Yuan X, Zou Y, Gao J, Xu X, Sun H, Zuo Q, Zhang Y, Li B (2022) OCT4, SOX2 and NANOG co-regulate glycolysis and participate in somatic induced reprogramming. Cytotechnology 74(3):371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG (2006) Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13(8):713–719

    Article  CAS  PubMed  Google Scholar 

  • Ernst P, Vakoc CR (2012) WRAD: enabler of the SET1-family of H3K4 methyltransferases. Brief Funct Genomics 11(3):217–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Shi X, Zhou S, Chen C, Hu C, Xia Q, Li X, Gao W, Ding Y, Zuo Q, Zhang Y, Li B (2022) DNA hypomethylation activation Wnt/TCF7L2/TDRD1 pathway promotes spermatogonial stem cell formation. J Cell Physiol 237(9):3640–3650

    Article  CAS  PubMed  Google Scholar 

  • Ghosal S, Das S, Chakrabarti J (2013) Long noncoding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells. Stem Cells Dev 22(16):2240–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gori F, Friedman LG, Demay MB (2006) Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Dev Biol 295(2):498–506

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Chen LH, Huang Y, Chang CC, Wang P, Pirozzi CJ, Qin X, Bao X, Greer PK, McLendon RE, Yan H, Keir ST, Bigner DD, He Y (2013) KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget 4(11):2144–2153

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu PL, Li H, Lau HT, Leonen C, Dhall A, Ong SE, Chatterjee C, Zheng N (2018) Crystal structure of the COMPASS H3K4 methyltransferase Catalytic Module. Cell 174(5):1106–1116e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Gao X, Cao K, Morgan MA, Mas G, Smith ER, Volk AG, Bartom ET, Crispino JD, Di Croce L, Shilatifard A (2017) Not all H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ cell specification. Mol Cell 65(3):460–475e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160(1–2):253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Nakamura T, Murayama K, Umehara H, Yamano N, Watanabe S, Taketo MM, Nakano T (2006) The stabilization of beta-catenin leads to impaired primordial germ cell development via aberrant cell cycle progression. Dev Biol 300(2):545–553

    Article  CAS  PubMed  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294

    Article  CAS  PubMed  Google Scholar 

  • Lawson K, Dunn N, Roelen B et al (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo—pub Med [J], vol 13. Genes & Development, pp 424–436. 4

  • Lee JH, Tate CM, You JS, Skalnik DG (2007) Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J Biol Chem 282(18):13419–13428

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Lim S, Han JY (2016) Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro. Sci Rep 6:34510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YT, Ayoub A, Park SH, Sha L, Xu J, Mao F, Zheng W, Zhang Y, Cho US, Dou Y (2021) Mechanism for DPY30 and ASH2L intrinsically disordered regions to modulate the MLL/SET1 activity on chromatin. Nat Commun 12(1):2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Kelly WG (2011) A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet 7(3):e1001349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, Wang Y, Shuai J, Chen J, Cao L, Li D, Shi P, Tian C, Zhang J, Dou Y, Li G, Chen Y, Lei M (2016) Structural basis for activity regulation of MLL family methyltransferases. Nature 530(7591):447–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang M, Hu K (2019) Involvement of lncRNA-HOTTIP in the repair of Ultraviolet Light-Induced DNA damage in Spermatogenic cells. Mol Cells 42(11):794–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang M, Wang H, He C, Zhang K, Hu K (2020) LncRNA-Gm2044 is transcriptionally activated by A-MYB and regulates Sycp1 expression as a mir-335-3p sponge in mouse spermatocyte-derived GC-2spd(ts) cells. Differentiation 114:49–57

    Article  CAS  PubMed  Google Scholar 

  • Lyu Q, Jin L, Yang X, Zhang F (2019) LncRNA MINCR activates Wnt/β-catenin signals to promote cell proliferation and migration in oral squamous cell carcinoma. Pathol Res Pract 215(5):924–930

    Article  CAS  PubMed  Google Scholar 

  • Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18(1):206

    Article  PubMed  PubMed Central  Google Scholar 

  • Nady N, Gupta A, Ma Z, Swigut T, Koide A, Koide S, Wysocka J (2015) ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation. Elife 4:e10150

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, Jiang M, Hu D, Agirre X, Niesvizky I, Lee JE, Chen HT, Ennishi D, Scott DW, Mottok A, Hother C, Liu S, Cao XJ, Tam W, Shaknovich R, Garcia BA, Gascoyne RD, Ge K, Shilatifard A, Elemento O, Nussenzweig A, Melnick AM, Wendel HG (2015) The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med 21(10):1199–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal D, Neha CV, Bhaduri U, Zenia Z, Dutta S, Chidambaram S, Rao MRS (2021) LncRNA Mrhl orchestrates differentiation programs in mouse embryonic stem cells through chromatin mediated regulation. Stem Cell Res 53:102250

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Dharmarajan V, Cosgrove MS (2008a) Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide. J Biol Chem 283(47):32158–32161

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Vought VE, Dharmarajan V, Cosgrove MS (2008b) A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex. J Biol Chem 283(47):32162–32175

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Vought VE, Dharmarajan V, Cosgrove MS (2011) A novel non-SET domain multi-subunit methyltransferase required for sequential nucleosomal histone H3 methylation by the mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem 286(5):3359–3369

    Article  CAS  PubMed  Google Scholar 

  • Pekowska A, Benoukraf T, Ferrier P, Spicuglia S (2010) A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res 20(11):1493–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Q, Takahashi YH, Yang Y, Hu H, Zhang Y, Brunzelle JS, Couture JF, Shilatifard A, Skiniotis G (2018) Structure and Conformational Dynamics of a COMPASS histone H3K4 methyltransferase complex. Cell 174(5):1117–1126e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampalli S, Li L, Mak E, Ge K, Brand M, Tapscott SJ, Dilworth FJ (2007) p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nat Struct Mol Biol 14(12):1150–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvan S, Avdic V, Tremblay V, Chaturvedi CP, Zhang P, Lanouette S, Blais A, Brunzelle JS, Brand M, Couture JF (2011) Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain. Nat Struct Mol Biol 18(7):857–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Ueda S, Niki Y (2008) Wingless signaling initiates mitosis of primordial germ cells during development in Drosophila. Mech Dev 125(5–6):498–507

    Article  CAS  PubMed  Google Scholar 

  • Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L (2010) Conserved long noncoding RNAs transcriptionally regulated by Oct4 and nanog modulate pluripotency in mouse embryonic stem cells. RNA 16(2):324–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Steward MM, Lee JS, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A (2006) Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 13(9):852–854

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, von Mering C (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51(D1):D638–D646

    Article  CAS  PubMed  Google Scholar 

  • Tan CC, Walsh MJ, Gelb BD (2009) Fgfr3 is a transcriptional target of Ap2delta and Ash2l-containing histone methyltransferase complexes. PLoS ONE 4(12):e8535

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Meyenn F, and W (2015) Reik. Forget the parents: epigenetic reprogramming in human germ cells. Cell 161(6):1248–1251

    Article  Google Scholar 

  • Wan M, Liang J, Xiong Y, Shi F, Zhang Y, Lu W, He Q, Yang D, Chen R, Liu D, Barton M, Songyang Z (2013) The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem 288(7):5039–5048

    Article  CAS  PubMed  Google Scholar 

  • Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Ma R, Jia G, Jian S, Zeng X, Xiong Z, Li B, Li C (2022) Effect of BMP-Wnt-nodal signal on stem cell differentiation. Zygote 30(1):138–143

    Article  CAS  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121(6):859–872

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Yuan Q, Niu M et al (2017) BMP4 promotes mouse iPS cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2 [J]. 153(2):211–220 Reproduction (Cambridge, England)

  • Ying Y, Qi X, Zhao GQ (2001) Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways[J]. Proc Natl Acad Sci USA 98(14):7858–7862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang Y, Zuo Q et al (2016) Effects of the transforming growth factor Beta Signaling Pathway on the differentiation of Chicken Embryonic Stem cells into male germ Cells[J]. Cell Reprogramming 18(6):401–410

    Article  CAS  Google Scholar 

  • Zhang H, Wei DL, Wan L, Yan SF, Sun YH (2017) Highly expressed lncRNA CCND2-AS1 promotes glioma cell proliferation through Wnt/β-catenin signaling. Biochem Biophys Res Commun 482(4):1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zuo Q, Gao X, Hu C, Zhou S, Chen C, Zou Y, Zhao J, Zhang Y, Li B (2021a) H3K4me2 promotes the activation of lncCPSET1 by Jun in the Chicken PGC formation. Anim (Basel) 11(6):1572

    Google Scholar 

  • Zhang C, Zuo Q, Wang M, Chen H, He N, Jin J, Li T, Jiang J, Yuan X, Li J, Shi X, Zhang M, Bai H, Zhang Y, Xu Q, Cui H, Chang G, Song J, Sun H, Zhang Y, Chen G, Li B (2021b) Narrow H3K4me2 is required for chicken PGC formation. J Cell Physiol 236(2):1391–1400

    Article  CAS  PubMed  Google Scholar 

  • Zuo Q, Jin K, Wang M, Zhang Y, Chen G, Li B (2021) BMP4 activates the Wnt-Lin28A-Blimp1-Wnt pathway to promote primordial germ cell formation via altering H3K4me2. J Cell Sci 134(3):jcs249375

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (32172718, 32272858 and 32372864), National Key R&D Program of China (2021YFD1200301), Yangzhou University graduate International Academic Exchange special fund project (YZUF2022206) and the “JBGS” Project of Seed Industry Revitalization in Jiangsu Province (JBGS [2021] 029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bichun Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest involved in conducting and reporting this study.

Additional information

Communicated by Joan Cerdá.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zhang, C., Zuo, Q. et al. lncCPSET1 acts as a scaffold for MLL2/COMPASS to regulate Bmp4 and promote the formation of chicken primordial germ cells. Mol Genet Genomics 299, 41 (2024). https://doi.org/10.1007/s00438-024-02127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00438-024-02127-4

Keywords

Navigation