Skip to main content
Log in

Acidobacteria members harbour an abundant and diverse carbohydrate-active enzymes (cazyme) and secreted proteasome repertoire, key factors for potential efficient biomass degradation

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The Acidobacteria phylum is a very abundant group (20–30% of microbial communities in soil ecosystems); however, little is known about these microorganisms and their ability to degrade the biomass and lignocellulose due to the difficulty of culturing them. We, therefore, bioinformatically studied the content of lignocellulolytic enzymes (total and predicted secreted enzymes) and secreted peptidases in an in silico library containing 41 Acidobacteria genomes. The results showed a high abundance and diversity of total and secreted Carbohydrate-Active enzymes (cazyme) families among the Acidobacteria compared to known previous degraders. Indeed, the relative abundance of cazymes in some genomes represented more than 6% of the gene coding proteins with at least 300 cazymes. The same observation was made with the predicted secreted peptidases with several families of secreted peptidases, which represented at least 1.5% of the gene coding proteins in several genomes. These results allowed us to highlight the lignocellulolytic potential of the Acidobacteria phylum in the degradation of lignocellulosic biomass, which could explain its high abundance in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almagro Armenteros JJ, Tsirigos KD, Sønderby CK et al (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

    CAS  PubMed  Google Scholar 

  • Aragunde H, Biarnés X, Planas A (2018) Substrate recognition and specificity of chitin deacetylases and related family 4 carbohydrate esterases. Int J Mol Sci 19:412

    PubMed  PubMed Central  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci 115:6506–6511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bei Q, Moser G, Müller C, Liesack W (2021) Seasonality affects function and complexity but not diversity of the rhizosphere microbiome in European temperate grassland. Sci Total Environ 784:147036

    CAS  PubMed  Google Scholar 

  • Bengtsson O, Arntzen MØ, Mathiesen G et al (2016) A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J Proteomics 131:104–112

    CAS  PubMed  Google Scholar 

  • Besaury L, Rémond C (2022) Culturable and metagenomic approaches of wheat bran and wheat straw phyllosphere’s highlight new lignocellulolytic microorganisms. Lett Appl Microbiol 74:840–850

    CAS  PubMed  Google Scholar 

  • Biswas R, Uellendahl H, Ahring BK (2015) Wet explosion: a universal and efficient pretreatment process for lignocellulosic biorefineries. BioEnergy Research 8:1101–1116

    CAS  Google Scholar 

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 2008:P10008

    Google Scholar 

  • Bobay L-M, Ochman H (2017) The evolution of bacterial genome architecture. Front Genet 8:72

    PubMed  PubMed Central  Google Scholar 

  • Brás JL, Cartmell A, Carvalho ALM et al (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci 108:5237–5242

    PubMed  PubMed Central  Google Scholar 

  • Brumm P, Hermanson S, Hochstein B et al (2011) Mining Dictyoglomus turgidum for enzymatically active carbohydrases. Appl Biochem Biotechnol 163:205–214

    CAS  PubMed  Google Scholar 

  • Bury D, Dahmane I, Derouaux A et al (2015) Positive cooperativity between acceptor and donor sites of the peptidoglycan glycosyltransferase. Biochem Pharmacol 93:141–150

    CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C et al (2008) The carbohydrate-active enzymes database (cazy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    PubMed  PubMed Central  Google Scholar 

  • Cassarini M, Besaury L, Rémond C (2021) Valorisation of wheat bran to produce natural pigments using selected microorganisms. J Biotechnol 339:81–92

    CAS  PubMed  Google Scholar 

  • Cassarini M, Crônier D, Besaury L, Rémond C (2022) Protein-rich agro-industrial co-products are key substrates for growth of Chromobacterium vaccinii and its violacein bioproduction. Waste Biomass Valoriz 13(11):4459–4468

    CAS  Google Scholar 

  • Chakraborty J, Suzuki-Minakuchi C, Tomita T et al (2021) A novel gene cluster is involved in the degradation of lignin-derived monoaromatics in Thermus oshimai JL-2. Appl Environ Microbiol 87:e01589-e1620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa OY (2020) Ecological functions and environmental fate of exopolymers of Acidobacteria. PhD Thesis

  • De Chaves MG, Silva GGZ, Rossetto R et al (2019) Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Front Microbiol 10:1680

    PubMed  PubMed Central  Google Scholar 

  • Dedysh SN, Damsté JSS (2018) Acidobacteria. eLS. Wiley, pp 1–10

    Google Scholar 

  • Dedysh SN, Yilmaz P (2018) Refining the taxonomic structure of the phylum Acidobacteria. Int J Syst Evol Microbiol 68(12):3796–3806

    CAS  PubMed  Google Scholar 

  • Detain J, Rémond C, Rodrigues CM et al (2022) Co-elicitation of lignocelluloytic enzymatic activities and metabolites production in an Aspergillus-Streptomyces co-culture during lignocellulose fractionation. Curr Res Microb Sci 3:100108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond S, Andeer PF, Li Z et al (2019) Mediterranean grassland soil C-N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nat Microbiol 4:1356–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Yang S, Lee BH (2021) Bioinformatic mapping of a more precise Aspergillus niger degradome. Sci Rep 11:1–21

    Google Scholar 

  • Espersen R, Huang Y, Falco FC et al (2021) Exceptionally rich keratinolytic enzyme profile found in the rare actinomycetes Amycolatopsis keratiniphila D2T. Appl Microbiol Biotechnol 105:8129–8138

    CAS  PubMed  Google Scholar 

  • Gavande PV, Basak A, Sen S et al (2021) Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Sci Rep 11:1–13

    Google Scholar 

  • Greening C, Carere CR, Rushton-Green R et al (2015) Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci 112:10497–10502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerriero G, Hausman J-F, Strauss J et al (2016) Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16:1–16

    CAS  Google Scholar 

  • Häkkinen M, Arvas M, Oja M et al (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:1–26

    Google Scholar 

  • Hale L, Feng W, Yin H et al (2019) Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME J 13:2901–2915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbaut M, Zoghlami A, Habrant A et al (2018) Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol Biofuels 11:1–17

    Google Scholar 

  • Jacquiod S, Franqueville L, Cecillon S et al (2013) Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS One 8:e79699

    PubMed  PubMed Central  Google Scholar 

  • Kalam S, Basu A, Ahmad I et al (2020) Recent understanding of soil acidobacteria and their ecological significance: a critical review. Front Microbiol 11:580024

    PubMed  PubMed Central  Google Scholar 

  • Karnaouri A, Topakas E, Paschos T et al (2013) Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 1:e46

    PubMed  PubMed Central  Google Scholar 

  • Karp PD, Riley M, Paley SM, Pellegrini-Toole A (2002) The metacyc database. Nucleic Acids Res 30:59–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kielak AM, Barreto CC, Kowalchuk GA et al (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744

    PubMed  PubMed Central  Google Scholar 

  • Koupaie EH, Dahadha S, Lakeh AB et al (2019) Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-a review. J Environ Manage 233:774–784

    Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    CAS  PubMed  Google Scholar 

  • Lacerda Júnior GV, Noronha MF, de Sousa STP et al (2017) Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. FEMS Microbiol Ecol 93(2)

  • Lladó S, Žifčáková L, Větrovský T et al (2016) Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol Fertil Soils 52:251–260

    Google Scholar 

  • Lu J, Yang Z, Xu W et al (2019) Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk. J Environ Sci 78:118–126

    CAS  Google Scholar 

  • Mai-Gisondi G, Maaheimo H, Chong S-L et al (2017) Functional comparison of versatile carbohydrate esterases from families CE1, CE6 and CE16 on acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan. Biochim Biophys Acta Gen Subj 1861:2398–2405

    CAS  PubMed  Google Scholar 

  • Nakamura AM, Nascimento AS, Polikarpov I (2017) Structural diversity of carbohydrate esterases. Biotechnol Res Innov 1:35–51

    Google Scholar 

  • Nam S, Alday JG, Kim M et al (2021) The relationships of present vegetation, bacteria, and soil properties with soil organic matter characteristics in moist acidic tundra in Alaska. Sci Total Environ 772:145386

    CAS  PubMed  Google Scholar 

  • Naumoff DG (2016) GH10 family of glycoside hydrolases: structure and evolutionary connections. Mol Biol 50:132–140

    CAS  Google Scholar 

  • Navarrete AA, Venturini AM, Meyer KM et al (2015) Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western Brazilian Amazon. Front Microbiol 6:1443

    PubMed  PubMed Central  Google Scholar 

  • Nekiunaite L, Arntzen MØ, Svensson B et al (2016) Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches. Biotechnol Biofuels 9:1–16

    Google Scholar 

  • Ondov BD, Treangen TJ, Melsted P et al (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:1–14

    Google Scholar 

  • Pankratov TA, Serkebaeva YM, Kulichevskaya IS et al (2008) Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2:551–560

    CAS  PubMed  Google Scholar 

  • Patra AK, Yu Z (2022) Genomic insights into the distribution of peptidases and proteolytic capacity among Prevotella and Paraprevotella species. Microbiol Spectr 10:e02185-e2221

    PubMed  PubMed Central  Google Scholar 

  • Petit E, Coppi MV, Hayes JC et al (2015) Genome and transcriptome of Clostridium phytofermentans, catalyst for the direct conversion of plant feedstocks to fuels. PLoS One 10:e0118285

    PubMed  PubMed Central  Google Scholar 

  • Piccinni FE, Ontañon OM, Ghio S et al (2019) Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates. J Appl Microbiol 126:811–825

    CAS  PubMed  Google Scholar 

  • Poria V, Saini JK, Singh S et al (2020) Arabinofuranosidases: characteristics, microbial production, and potential in waste valorization and industrial applications. Biores Technol 304:123019

    CAS  Google Scholar 

  • Rawat SR, Männistö MK, Bromberg Y, Häggblom MM (2012) Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol 82:341–355

    CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    CAS  PubMed  Google Scholar 

  • Ricard G, McEwan NR, Dutilh BE et al (2006) Horizontal gene transfer from Bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7:1–13

    Google Scholar 

  • Rodrigues GR, Pinto OHB, Schroeder LF et al (2020) Unraveling the xylanolytic potential of Acidobacteria bacterium AB60 from Cerrado soils. FEMS Microbiol Lett 367:fnaa149

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Strazzulli A, Cobucci-Ponzano B, Iacono R et al (2020) Discovery of hyperstable carbohydrate-active enzymes through metagenomics of extreme environments. FEBS J 287:1116–1137

    CAS  PubMed  Google Scholar 

  • Tolonen AC, Haas W, Chilaka AC et al (2011) Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. Mol Syst Biol 7:461

    PubMed  PubMed Central  Google Scholar 

  • Trent MS, Ribeiro AA, Lin S et al (2001) An inner membrane enzyme in salmonellaand escherichia coli that transfers 4-amino-4-deoxy-l-arabinose to Lipid A: INDUCTION IN POLYMYXIN-RESISTANT MUTANTS AND ROLE OF A NOVEL LIPID-LINKED DONOR* 210. J Biol Chem 276:43122–43131

    CAS  PubMed  Google Scholar 

  • Van Hees PA, Jones DL, Finlay R et al (2005) The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13

    Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams-Rhaesa AM, Awuku NK, Lipscomb GL et al (2018) Native xylose-inducible promoter expands the genetic tools for the biomass-degrading, extremely thermophilic bacterium Caldicellulosiruptor bescii. Extremophiles 22:629–638

    CAS  PubMed  Google Scholar 

  • Zhang K, Chen X, Schwarz WH, Li F (2014) Synergism of glycoside hydrolase secretomes from two thermophilic bacteria cocultivated on lignocellulose. Appl Environ Microbiol 80:2592–2601

    PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Maruoka M, Nanatani K et al (2021) High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of Cazymes. J Biosci Bioeng 131:622–630

    CAS  PubMed  Google Scholar 

  • Zhoukun L, Wenwen Z, Lei Z et al (2019) Gene expression and biochemical characterization of a GH77 4-α-glucanotransferase CcGtase From Corallococcus sp. EGB Starch-Stärke 71:1800254

    Google Scholar 

Download references

Acknowledgements

The Funding support for this work has been received from EC2CO INSU “Novacultmic” project.

Author information

Authors and Affiliations

Authors

Contributions

MC and LB: performed data analysis, genetic data interpretation, and wrote custom scripts and the manuscript, participated in the discussions on the overall and detailed study plan. LB designed the research project and supervised it. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ludovic Besaury.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Consent for publication

Not applicable.

Additional information

Communicated by Martine Collart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coluccia, M., Besaury, L. Acidobacteria members harbour an abundant and diverse carbohydrate-active enzymes (cazyme) and secreted proteasome repertoire, key factors for potential efficient biomass degradation. Mol Genet Genomics 298, 1135–1154 (2023). https://doi.org/10.1007/s00438-023-02045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-023-02045-x

Keywords

Navigation