Skip to main content
Log in

Network diffusion-based approach for survival prediction and identification of biomarkers using multi-omics data of papillary renal cell carcinoma

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Identification of cancer subtypes based on molecular knowledge is crucial for improving the patient diagnosis, prognosis, and treatment. In this work, we integrated copy number variations (CNVs) and transcriptomic data of Kidney Papillary Renal Cell Carcinoma (KIRP) using a network diffusion strategy to stratify cancers into clinically and biologically relevant subtypes. We constructed GeneNet, a KIRP specific gene expression network from RNA-seq data. The copy number variation data was projected onto GeneNet and propagated on the network for clustering. We identified robust subtypes that are biologically informative and significantly associated with patient survival, tumor stage and clinical subtypes of KIRP. We performed a Singular Value Decomposition (SVD) analysis of KIRP subtypes, which revealed the genes/silent players related to poor survival. A differential gene expression analysis between subtypes showed that genes related to immune, extracellular matrix organization, and genomic instability are upregulated in the poor survival group. Overall, the network-based approach revealed the molecular subtypes of KIRP and captured the relationship between gene expression and CNVs. This framework can be further expanded to integrate other omics data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of supporting data

All data generated or analysed during this study are included in this published article. Code is available in: https://github.com/Cancer-Research-Project/NBS-KIRP-CNV.

References

  • AACR Project GENIE Consortium (2017) Aacr project genie: powering precision medicine through an international consortium. Cancer Discov 7:818–831

    Article  Google Scholar 

  • Aubert N, Brunel S, Olive D et al (2021) Blockade of hvem for prostate cancer immunotherapy in humanized mice. Cancers 13:3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed  Google Scholar 

  • Bhaskaran N, Liu Z, Saravanamuthu SS et al (2018) Identification of casz1 as a regulatory protein controlling t helper cell differentiation, inflammation, and immunity. Front Immunol 9:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunet JP, Tamayo P, Golub TR et al (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 101:4164–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai D, He X, Wu X, et al (2008) Non-negative matrix factorization on manifold. In: 8th IEEE Int Conf Data Mining, p 63–72

  • Carter S, Eklund A, Kohane I et al (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Liu D, Xiong W et al (2021) Errfi1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov 7:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delahunt B, Eble JN (1997) Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Modern Pathol Off J U. S. Can Acad Pathol Inc 10:537–544

    CAS  Google Scholar 

  • Forbes SA, Beare D, Boutselakis H et al (2017) Cosmic: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D783

    Article  CAS  PubMed  Google Scholar 

  • Frazzi R (2021) Birc3 and birc5: multi-faceted inhibitors in cancer. Cell Biosci 11(1):1–14

    Article  Google Scholar 

  • Fujimoto A, Furuta M, Totoki Y et al (2016) Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet 48:500–509

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32:1267–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • He Z, Zhang J, Yuan X et al (2017) Network based stratification of major cancers by integrating somatic mutation and gene expression data. PLoS One 12(e0177):662

    Google Scholar 

  • Hofree M, Shen JP, Carter H et al (2013) Network-based stratification of tumor mutations. Nat Methods 10:1108–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JK, Carlin DE, Yu MK et al (2018a) Systematic evaluation of molecular networks for discovery of disease genes. Cell Syst 6:484–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JK, Jia T, Carlin DE et al (2018b) pynbs: a python implementation for network-based stratification of tumor mutations. Bioinformatics 34:2859–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio F, Knijnenburg TA, Vis DJ et al (2016) A landscape of pharmacogenomic interactions in cancer. Cell 166:740–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Karner CM, Das A, Ma Z et al (2011) Canonical wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138(7):1247–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli K, Pillarisetty VG, Kim TS (2022) Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther 29:10–21

    Article  CAS  PubMed  Google Scholar 

  • Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari N, Dwarakanath BS, Das A et al (2016) Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour biology J Int Soc Onco Dev Biol Med 37:11,553-11,572

    Article  CAS  Google Scholar 

  • Kundu A, Nam H, Shelar S et al (2020) Prdm16 suppresses hif-targeted gene expression in kidney cancer. J Exp Med 217(e20191):005

    Google Scholar 

  • Lee D, Seung H (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ren H, Zhang Y et al (2022) Mecom/prdm3 and prdm16 serve as prognostic-related biomarkers and are correlated with immune cell infiltration in lung adenocarcinoma. Front Oncol 12:772686

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao C, Wang Q, An J et al (2022) Spinks in tumors: potential therapeutic targets. Front Oncol 12(833):741

    Google Scholar 

  • Linehan WM, Spellman PT, Ricketts CJ et al (2016) Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med 374:135–145

    Article  PubMed  Google Scholar 

  • Liu Z, Zhang S (2015) Tumor characterization and stratification by integrated molecular profiles reveals essential pan-cancer features. BMC Genom 16:503

    Article  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo L, Zhou H, Su H (2021) Identification of 4-genes model in papillary renal cell tumor microenvironment based on comprehensive analysis. BMC Cancer 21:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma M, Zhang Z, Liu Y et al (2022) Preliminary study on the role of the c5orf46 gene in renal cancer. Transl Oncol 21(101):442

    Google Scholar 

  • Masjedi A, Hashemi V, Hojjat-Farsangi M et al (2018) The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 108:1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Miura K, Yamane J et al (2016) Serpini1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci 107(5):619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monti S, Tamayo P, Mesirov J et al (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52:91–118

    Article  Google Scholar 

  • Pandey N, Lanke V, Vinod PK (2020) Network-based metabolic characterization of renal cell carcinoma. Sci Rep 10:5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revel M, Daugan MV, Sautés-Fridman C et al (2020) Complement system: promoter or suppressor of cancer progression? Antibodies (Basel) 9:57

    Article  CAS  PubMed  Google Scholar 

  • Roumenina LT, Daugan MV, Noé R et al (2019) Tumor cells hijack macrophage-produced complement c1q to promote tumor growth. Cancer Immunol Res 7:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Seifert M, Beyer A (2018) regnet: an r package for network-based propagation of gene expression alterations. Bioinformatics 34:308–311

    Article  PubMed  Google Scholar 

  • Senbabaoglu Y, Michailidis G, Li J (2014) Critical limitations of consensus clustering in class discovery. Sci Rep 4:6207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NP, Vinod PK (2020) Integrative analysis of dna methylation and gene expression in papillary renal cell carcinoma. Mol Genet Genom 295:807–824

    Article  CAS  Google Scholar 

  • Singh NP, Bapi RS, Vinod PK (2018) Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma. Comput Biol Med 100:92–99

    Article  PubMed  Google Scholar 

  • The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  PubMed Central  Google Scholar 

  • The Cancer Genome Atlas Research Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  • Vandin F, Upfal E, Raphael BJ (2011) Algorithms for detecting significantly mutated pathways in cancer. J Comput Biol J Comput Mol Cell Biol 18:507–522

    Article  CAS  Google Scholar 

  • Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in pdgfra, idh1, egfr, and nf1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science (New York, NY) 339:1546–1558

    Article  CAS  Google Scholar 

  • Wang Z, Song Q, Yang Z et al (2019) Construction of immune-related risk signature for renal papillary cell carcinoma. Cancer Med 8:289–304

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Liu Z, Xu J et al (2015) Netbags: a network-based clustering approach with gene signatures for cancer subtyping analysis. Biomark Med 9:1053–1065

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Kong D, Li Z et al (2021) Screening and identification of key biomarkers of papillary renal cell carcinoma by bioinformatic analysis. PLoS One 16(e0254):868

    Google Scholar 

  • Yan L, Zhang Y, Ding B et al (2019) Genetic alteration of histone lysine methyltransferases and their significance in renal cell carcinoma. PeerJ 7:e6396

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Lee VHF, Ng MK et al (2019) Molecular subtyping of cancer: current status and moving toward clinical applications. Brief Bioinform 20:572–584

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Yang H, Zhao S et al (2015) Network-based stratification analysis of 13 major cancer types using mutations in panels of cancer genes. BMC Genomics 16:S7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by iHUB-Data, International Institute of Information Technology, Hyderabad, India.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PKV; methodology: KSS, AJ, MB; formal analysis and investigation: KSS, AJ, MB; writing—original draft preparation: KSS; writing—review and editing: KSS, AJ, MB, PKV; funding acquisition: PKV; supervision: PKV.

Corresponding author

Correspondence to P. K. Vinod.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical approval and consent to participate

Not applicable.

Human and animal ethics

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, K.S., Jose, A., Bani, M. et al. Network diffusion-based approach for survival prediction and identification of biomarkers using multi-omics data of papillary renal cell carcinoma. Mol Genet Genomics 298, 871–882 (2023). https://doi.org/10.1007/s00438-023-02022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-023-02022-4

Keywords

Navigation