Skip to main content
Log in

The molecular genetics of human appendicular skeleton

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of “Nosology and Classification of Genetic skeletal disorders: 2019 Revision”. In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand–foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand–foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas H, Haque S, Flatz G (1987) X-chromosomally inherited split-hand/split-foot anomaly in a Pakistani kindred. Hum Genet 75(2):169–173

    Article  PubMed  Google Scholar 

  • Agarwal P, Wylie JN, Galceran J, Arkhitko O, Li C, Deng C, Grosschedl R, Bruneau BG (2003) Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development 130:623–633

    Article  CAS  PubMed  Google Scholar 

  • Akarsu AN, Stoilov I, Yilmaz E, Sayli BS, Sarfarazi M (1996) Genomic structure of HOXD13 gene: a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum Mol Genet 5(7):945–952

    Article  CAS  PubMed  Google Scholar 

  • Akarsu AN, Ozbas F, Kostakoglu N (1997) Mapping of the second locus of postaxial polydactyly type A(PAP-A2) to chromosome 13q21-q32. Am J Hum Genet 61(suppl.):A265

  • Al-Qattan MM (2011) WNT pathways and upper limb anomalies. J Hand Surg Eur Vol 36(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Alvarado DM, McCall K, Aferol H, Silva MJ, Garbow JR, Spees WM, Patel T, Siegel M, Dobbs MB, Gurnett CA (2011) Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum Mol Genet 20(20):3943–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armour CM, McCready ME, Baig A, Hunter AG, Bulman DE (2002) A novel locus for brachydactyly type A1 on chromosome 5p13 3-p13 2. J Med Genet 39(3):186–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barham G, Clarke NM (2008) Genetic regulation of embryological limb development with relation to congenital limb deformity in humans. J Child Orthop 2(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker S, Chesney D, Miedzybrodzka Z, Maffulli N (2003) Genetics and epidemiology of idiopathic congenital talipes equinovarus. J Pediatr Orthop 23(2):265–272

    PubMed  Google Scholar 

  • Basit S, Naqvi SK, Ansar M, Ahmad W (2012) Genetic mapping of an autosomal recessive postaxial polydactyly type A to chromosome 13q13 3–q21 2 and screening of the candidate genes. Hum Genet 131(3):415–422

    Article  PubMed  Google Scholar 

  • Bass HN (1968) Familial absence of middle phalanges with nail dysplasia: a new syndrome. Pediatrics 42(2):318–323

    Article  CAS  PubMed  Google Scholar 

  • Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B (1997) Mutations in human cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15(1):30–35

    Article  CAS  PubMed  Google Scholar 

  • Bell J (1951) On brachydactyly and symphalangism. Treasury Hum Inherit 5:1–30

    Google Scholar 

  • Bijlsma EK, Knegt AC, Bilardo CM, Goodman FR (2005) Increased nuchal translucency and split-hand/foot malformation in a fetus with an interstitial deletion of chromosome 2q that removes the SHFM5 locus. Prenat Diagn: Publ Affil Int Soc Prenat Diagn 25(1):39–44

    Article  CAS  Google Scholar 

  • Bongers EM, Duijf PH, van Beersum SE, Schoots J, Van Kampen A, Burckhardt A, Hamel BC, Lošan F, Hoefsloot LH, Yntema HG, Knoers NV (2004) Mutations in the human TBX4 gene cause small patella syndrome. Am J Hum Genet 74(6):1239–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongers EM, Huysmans FT, Levtchenko E, de Rooy JW, Blickman JG, Admiraal RJ, Huygen PL, Cruysberg JR, Toolens PA, Prins JB, Krabbe PF (2005) Genotype–phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy. Eur J Hum Genet 13(8):935–946

    Article  CAS  PubMed  Google Scholar 

  • Bosse K, Betz RC, Lee YA, Wienker TF, Reis A, Kleen H, Propping P, Cichon S, Nöthen MM (2000) Localization of a gene for syndactyly type 1 to chromosome 2q34-q36. Am J Hum Genet 67(2):492–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulet AM, Capecchi MR (2004) Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 131(2):299–309

    Article  CAS  PubMed  Google Scholar 

  • Cantú JM, Cortes R, Urrusti J (1974) Autosomal recessive postaxial polydactyly: report of a family. Birth Defects Orig Artic Ser 10(5):19–22

    PubMed  Google Scholar 

  • Cao L, Yang W, Wang S, Chen C, Zhang X, Luo Y (2017) Molecular genetic characterization of a chinese family with severe split hand/foot malformation. Genet Test Mol Biomark 21(6):357–362

    Article  CAS  Google Scholar 

  • Castilla EE, Paz JE, Orioli-Parreiras IM, Opitz JM, Hermann J (1980) Syndactyly: frequency of specific types. Am J Med Genet 5(4):357–364

    Article  CAS  PubMed  Google Scholar 

  • Charité J, de Graaff W, Shen S, Deschamps J (1994) Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78(4):589–601

    Article  PubMed  Google Scholar 

  • Chung CS, Nemechek RW, Larsen IJ, Ching GH (1969) Genetic and epidemiological studies of clubfoot in Hawaii. Hum Hered 19(4):321–342

    Article  CAS  PubMed  Google Scholar 

  • Crackower MA, Scherer SW, Rommens JM, Hui CC, Poorkaj P, Soder S, Cobben JM, Hudgins L, Evans JP, Tsui LC (1996) Characterization of the split hand/split foot malformation locus SHFM1 at 7q21. 3–q22. 1 and analysis of a candidate gene for its expression during limb development. Hum Mol Genet 5(5):571–579

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Li NN, Deng Y, Mao M, Wang H, Zhu J (2011) Genotype-phenotype analysis of a Chinese family with split hand/split foot and syndactyly. Zhonghua Yi Xue Yi Chuan Xue Za Zhi Chin J Med Genet 28(4):379

    CAS  Google Scholar 

  • Dai L, Deng Y, Li N, Xie L, Mao M, Zhu J (2013) Discontinuous microduplications at chromosome 10q24 31 identified in a Chinese family with split hand and foot malformation. BMC Med Genet 14(1):1–6

    Article  CAS  Google Scholar 

  • David TJ, Burwood RL (1972) The nature and inheritance of Kirner’s deformity. J Med Genet 9(4):430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AP, Capecchi MR (1996) A mutational analysis of the 5′ HoxD genes: dissection of genetic interactions during limb development in the mouse. Development 122(4):1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375(6534):791–795

    Article  CAS  PubMed  Google Scholar 

  • Debeer P, Schoenmakers EF, Twal WO, Argraves WS, De Smet L, Fryns JP, Van de Ven WJ (2002) The fibulin-1 gene (FBLN1) is disrupted in at (12; 22) associated with a complex type of synpolydactyly. J Med Genet 39(2):98–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Tan T, Yuan L (2015) Advances in the molecular genetics of non-syndromic polydactyly. Expert Rev Mol Med 17:18

    Article  CAS  Google Scholar 

  • Dobbs MB, Gurnett CA (2012) Genetics of clubfoot. J Pediatr Orthop B 21(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowd CN (1896) Cleft hand: a report of a case successfully treated by the use of periosteal flaps. Annals Surg 24(2):210

    Google Scholar 

  • Duboc V, Logan MP (2011) Pitx1 is necessary for normal initiation of hindlimb outgrowth through regulation of Tbx4 expression and shapes hindlimb morphologies via targeted growth control. Development 138(24):5301–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duijf PH, van Bokhoven H, Brunner HG (2003) Pathogenesis of split-hand/split-foot malformation. Hum Mol Genet 12(1):51–60

    Article  CAS  Google Scholar 

  • Elliott AM, Evans JA (2006) Genotype–phenotype correlations in mapped split hand foot malformation (SHFM) patients. Am J Med Genet A 140(13):1419–1427

    Article  PubMed  Google Scholar 

  • Enriquez A, Krivanek M, Flöttmann R, Peters H, Wilson M (2016) Recurrence of split hand/foot malformation, cleft lip/palate, and severe urogenital abnormalities due to germline mosaicism for TP63 mutation. Am J Med Genet A 170(9):2372–2376

    Article  CAS  PubMed  Google Scholar 

  • Ergin H, Semerci CN, Karakus YT, Scheffer H, Ergin S, Koltuksuz U, Meijer R, Satiroglu-Tufan NL (2010) The EEC syndrome and SHFM: report of two cases and mutation analysis of p63 gene. Turk J Pediatr 52(5):529

    PubMed  Google Scholar 

  • Faiyaz-Ul-Haque M, Ahmad W, Wahab A, Haque S, Azim AC, Zaidi SH, Teebi AS, Ahmad M, Cohn DH, Siddique T, Tsui LC (2002) Frameshift mutation in the cartilagederived morphogenetic protein 1 (CDMP1) gene and severe acromesomelic chondrodysplasia resembling Grebe-type chondrodysplasia. Am J Med Genet 111:31–37

    Article  PubMed  Google Scholar 

  • Filho AB, Souza J, Faucz FR, Sotomaior VS, Dupont B, Bartel F, Rodriguez R, Schwartz CE, Skinner C, Alliman S, Raskin S (2011) Somatic/gonadal mosaicism in a syndromic form of ectrodactyly, including eye abnormalities, documented through array-based comparative genomic hybridization. Am J Med Genet A 155(5):1152–1156

    Article  CAS  Google Scholar 

  • Fromental-Ramain C, Warot X, Lakkaraju S, Favier B, Haack H, Birling C et al (1996a) Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122(2):461–472

    Article  CAS  PubMed  Google Scholar 

  • Fromental-Ramain C, Warot X, Messadecq N, LeMeur M, Dolle P, Chambon P (1996b) Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122(10):2997–3011

    Article  CAS  PubMed  Google Scholar 

  • Galjaard RJ, Smits AP, Tuerlings JH, Bais AG, Avella AM, Breedveld G, de Graaff E, Oostra BA, Heutink P (2003) A new locus for postaxial polydactyly type A/B on chromosome 7q21–q34. Eur J Hum Genet 11(5):409–415

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Guo J, She C, Shu A, Yang M, Tan Z, Yang X, Guo S, Feng G, He L (2001) Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. Nat Genet 28(4):386–388

    Article  CAS  PubMed  Google Scholar 

  • Ghadami M, Majidzadeh-A K, Haerian BS, Damavandi E, Yamada K, Pasallar P, Najafi MT, Nishimura G, Tomita HA, Yoshiura KI, Niikawa N (2001) Confirmation of genetic homogeneity of syndactyly type 1 in an Iranian family. Am J Med Genet 104(2):147–151

    Article  CAS  PubMed  Google Scholar 

  • Gladwin A, Donnai D, Metcalfe K, Schrander-Stumpel C, Brueton L, Verloes A, Aylsworth A, Toriello H, Winter R, Dixon M (1997) Localization of a gene for oculodentodigital syndrome to human chromosome 6q22–q24. Hum Mol Genet 6(1):123–127

    Article  CAS  PubMed  Google Scholar 

  • Goodman FR (2002) Limb malformations and the human HOX genes. Am J Med Genet 112(3):256–265

    Article  PubMed  Google Scholar 

  • Goodman FR, Majewski F, Collins AL, Scambler PJ (2002) A 117-kb microdeletion removing HOXD9–HOXD13 and EVX2 causes synpolydactyly. Am J Hum Genet 70(2):547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray K, Pacey V, Gibbons P, Little D, Burns J (2014) Interventions for congenital talipes equinovarus (clubfoot). Cochrane Database of Syst Rev. https://doi.org/10.1002/14651858.CD008602.pub3

    Article  Google Scholar 

  • Haberlandt E, Löffler J, Hirst-Stadlmann A, Stöckl B, Judmaier W, Fischer H, Heinz-Erian P, Müller T, Utermann G, Smith RJ, Janecke AR (2001) Split hand/split foot malformation associated with sensorineural deafness, inner and middle ear malformation, hypodontia, congenital vertical talus, and deletion of eight microsatellite markers in 7q21. 1–q21. 3. J Med Genet 38(6):405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horan GS, Ramirez-Solis R, Featherstone MS, Wolgemuth DJ, Bradley A, Behringer RR (1995) Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 9(13):1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Hostikka SL, Capecchi MR (1998) The mouse Hoxc11 gene: genomic structure and expression pattern. Mech Dev 70(1–2):133–145

    Article  CAS  PubMed  Google Scholar 

  • Hsü CK (1965) Hereditary syndactylia in a Chinese family. Chin Med J 84(7):482

    PubMed  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087

    Article  CAS  PubMed  Google Scholar 

  • Jena N, Martin-Seisdedos C, McCue P, Croce CM (1997) BMP7 null mutation in mice: developmental defects in skeleton, kidney, and eye. Exp Cell Res 230:28–37

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Kan SH, Oldridge M, Trembath RC, Roche P, Esnouf RM, Giele H, Wilkie OA (2003) Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E. Am J Hum Genet 72(4):984–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston O, Kirby VV (1955) Syndactyly of the ring and little finger. Am J Hum Genet 7(1):80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones B, Byers H, Watson JS, Newman WG (2014) Identification of a novel familial FGF16 mutation in metacarpal 4–5 fusion. Clin Dysmorphol 23(3):95–97

    Article  PubMed  Google Scholar 

  • Khan S, Basit S, Zimri FK, Ali N, Ali G, Ansar M, Ahmad W (2012) A novel homozygous missense mutation in WNT10B in familial split-hand/foot malformation. Clin Genet 82(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • King M, Arnold JS, Shanske A, Morrow BE (2006) T-genes and limb bud development. Am J Med Genet A 140(13):1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Kirner J (1927) Doppelseitige Verkrummungen des kleinfingerendgliedes als selbstandiges krankheitsbild. Fortschr Geb d Roentgenst 36:804–886

    Google Scholar 

  • Kispert A, Herrmann BG (1993) The Brachyury gene encodes a novel DNA binding protein. EMBO J 12(8):3211–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klopocki E, Lohan S, Doelken SC, Stricker S, Ockeloen CW, de Aguiar RS, Lezirovitz K, Netto RC, Jamsheer A, Shah H, Kurth I (2012) Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. J Med Genet 49(2):119–125

    Article  CAS  PubMed  Google Scholar 

  • Klopocki E, Kähler C, Foulds N, Shah H, Joseph B, Vogel H, Lüttgen S, Bald R, Besoke R, Held K, Mundlos S (2012) Deletions in PITX1 cause a spectrum of lower-limb malformations including mirror-image polydactyly. Eur J Hum Genet 20(6):705–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klopocki E, Wasif N, Tariq M, Khan S, Hecht J, Krawitz P, Mundlos S, Ahmad W (2013) Whole exome sequencing identified a novel zinc-finger gene ZNF141 associated with autosomal recessive postaxial polydactyly type A. J Med Genet 50(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Kmita M, Tarchini B, Zakany J, Logan M, Tabin CJ, Duboule D (2005) Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature 435(7045):1113–1116

    Article  CAS  PubMed  Google Scholar 

  • Kornak U, Mundlos S (2003) Genetic disorders of the skeleton: a developmental approach. Am J Hum Genet 73(3):447–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanctôt C, Moreau A, Chamberland M, Tremblay ML, Drouin J (1999) Hindlimb patterning and mandible development require the Ptx1 gene. Development 126(9):1805–1810

    Article  PubMed  Google Scholar 

  • Laurin CA, Favreau JC, Labelle P (1964) Bilateral absence of the radius and tibia with bilateral reduplication of the ulna and fibula: a case report. JBJS 46(1):137–142

    Article  CAS  Google Scholar 

  • Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Süring K, Majewski F, Tinschert S, Grzeschik KH, Müller D, Knaus P (2003) Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc Natl Acad Sci 100(21):12277–12282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann K, Seemann P, Silan F, Goecke TO, Irgang S, Kjaer KW, Kjaergaard S, Mahoney MJ, Morlot S, Reissner C, Kerr B (2007) A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN. Am J Hum Genet 81(2):388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerch H (1948) Erbliche Synostosen der Ossa metacarpalia IV und V. Z Orthop 78:13–16

    Google Scholar 

  • Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12(14):1725–1735

    Article  CAS  PubMed  Google Scholar 

  • Lezirovitz K, Maestrelli SR, Cotrim NH, Otto PA, Pearson PL, Mingroni-Netto RC (2008) A novel locus for split-hand foot malformation associated with tibial hemimelia (SHFLD syndrome) maps to chromosome region 17p13. 1–17p13. 3. Human Genet 123(6):625

    Article  CAS  Google Scholar 

  • Li H, Wang CY, Wang JX, Wu GS, Yu P, Yan XY, Chen YG, Zhao LH, Zhang YP (2009) Mutation analysis of a large Chinese pedigree with congenital preaxial polydactyly. Eur J Hum Genet 17(5):604–610

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, Yigit G, Percin F, Goodman F, Nürnberg G, Cenani A, Urquhart J (2010) LRP4 mutations alter Wnt/β-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet 86(5):696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan M, Simon HG, Tabin C (1998) Differential regulation of T-box and homeobox transcription factors suggests roles in controlling chick limb-type identity. Development 125(15):2825–2835

    Article  CAS  PubMed  Google Scholar 

  • Low KJ, Nwbury-Ecob RA (2012) Homozygous nonsense mutation in HOXD13 underlies synpolydactyly with a cleft. Clin Dysmorphol 21(3):141–143

    Article  PubMed  Google Scholar 

  • Malik S (2014) Polydactyly: phenotypes, genetics and classification. Clin Genet 85(3):203–212

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Percin FE, Ahmad W, Percin S, Akarsu NA, Koch MC, Grzeschik KH (2005) Autosomal recessive mesoaxial synostotic syndactyly with phalangeal reduction maps to chromosome 17p13 3. Am J Med Genet A 134(4):404–408

    Article  PubMed  Google Scholar 

  • Malik S, Abbasi AA, Ansar M, Ahmad W, Koch MC, Grzeschik KH (2006) Genetic heterogeneity of synpolydactyly: a novel locus SPD3 maps to chromosome 14q11. 2–q12. Clin Genet 69(6):518–524

    Article  CAS  PubMed  Google Scholar 

  • Mariani FV, Ahn CP, Martin GR (2008) Genetic evidence that FGFs have an instructive role in limb proximal–distal patterning. Nature 453(7193):401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntyre DC, Rakshit S, Yallowitz AR, Loken L, Jeannotte L, Capecchi MR et al (2007) Hox patterning of the vertebrate rib cage. Development 134(16):2981–2989

    Article  CAS  PubMed  Google Scholar 

  • Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12(20):3156–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan J (1969) Postaxial polydactyly in three Indian families. J Med Genet 6(2):196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moorthi RN, Hashmi SS, Langois P, Canfield M, Waller DK, Hecht JT (2005) Idiopathic talipes equinovarus (ITEV)(clubfeet) in Texas. Am J Med Genet A 132(4):376–380

    Article  Google Scholar 

  • Müller CW, Herrmann BG (1997) Crystallographic structure of the T domain–DNA complex of the Brachyury transcription factor. Nature 389(6653):884–888

    Article  PubMed  Google Scholar 

  • Mumtaz S, Yıldız E, Lal K, Tolun A, Malik S (2017) Complex postaxial polydactyly types A and B with camptodactyly, hypoplastic third toe, zygodactyly and other digit anomalies caused by a novel GLI3 mutation. Eur J Med Genet 60(5):268–274

    Article  PubMed  Google Scholar 

  • Muragaki Y, Mundlos S, Upton J, Olsen BR (1996) Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272(5261):548–551

    Article  CAS  PubMed  Google Scholar 

  • Niha N (2017) Polydactyly—a review. Int J Inf Res Rev 04(07):4302–4305

    Google Scholar 

  • O’Shea RM, Sabatini CS (2016) What is new in idiopathic clubfoot? Curr Rev Musculoskelet Med 9(4):470–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Palencia-Campos A, Ullah A, Nevado J, Yıldırım R, Unal E, Ciorraga M, Barruz P, Chico L, Piceci-Sparascio F, Guida V, De Luca A (2017) GLI1 inactivation is associated with developmental phenotypes overlapping with Ellis–van Creveld syndrome. Hum Mol Genet 26(23):4556–4571

    Article  CAS  PubMed  Google Scholar 

  • Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72(2):408–418

    Article  CAS  PubMed  Google Scholar 

  • Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6(12):893–904

    Article  CAS  PubMed  Google Scholar 

  • Peterson JF, Ghaloul-Gonzalez L, Madan-Khetarpal S, Hartman J, Surti U, Rajkovic A, Yatsenko SA (2014) Familial microduplication of 17q23. 1–q23. 2 involving TBX4 is associated with congenital clubfoot and reduced penetrance in females. Am J Med Genet A 164(2):364–369

    Article  CAS  Google Scholar 

  • Polinkovsky A, Robin NH, Thomas JT, Irons M, Lynn A, Goodman FR, Reardon W, Kant SG, Brunner HG, van der Burgt I, Chitayat D (1997) Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat Genet 17(1):18

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishna U, Blouin JL, Mehenni H, Patel UC, Patel MN, Solanki JV, Antonarakis SE (1997) Mapping one form of autosomal dominant postaxial polydactyly type A to chromosome 7p15-q11 23 by linkage analysis. Am J Hum Genet 60(3):597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage JL, Varacallo M (2018) Anatomy, shoulder and upper limb, wrist extensor muscles

    Google Scholar 

  • Rambaud-Cousson A, Dudin AA, Zuaiter AS, Thalji A (1991) Syndactyly type IV/hexadactyly of feet associated with unilateral absence of the tibia. Am J Med Genet 40(2):144–145

    Article  CAS  PubMed  Google Scholar 

  • Ray AK, Haldane JB (1965) The genetics of a common Indian digital abnormality. Proc Natl Acad Sci USA 53(5):1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson R, Donnai D, Meire F, Dixon MJ (2004) Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J Med Genet 41(1):60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75(7):1401–1416

    Article  CAS  PubMed  Google Scholar 

  • Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C (1995) Induction of the LIM homeobox gene Lmx1 by WNT6a establishes dorsoventral pattern in the vertebrate limb. Cell 83(4):631–640

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Esteban C, Tsukui T, Yonei S, Magallon J, Tamura K, Belmonte JC (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398(6730):814–818

    Article  CAS  PubMed  Google Scholar 

  • Sadler TW (1998) Embryology and gene regulation of limb development. In: Herring JA, Birch JG (eds) The child with a limb deficiency. American Academy of Orthopaedic Surgeons, Rosemont, IL, p 3

  • Sato D, Liang D, Wu L, Pan Q, Xia K, Dai H, Wang H, Nishimura G, Yoshiura KI, Xia J, Niikawa N (2007) A syndactyly type IV locus maps to 7q36. J Hum Genet 52(6):561–564

    Article  CAS  PubMed  Google Scholar 

  • Schrauwen I, Giese AP, Aziz A, Lafont DT, Chakchouk I, Santos-Cortez RL, Lee K, Acharya A, Khan FS, Ullah A, Nickerson DA (2019) FAM92A underlies nonsyndromic postaxial polydactyly in humans and an abnormal limb and digit skeletal phenotype in mice. J Bone Miner Res 34(2):375–386

    Article  CAS  PubMed  Google Scholar 

  • Schwabe GC, Mundlos S (2004) Genetics of congenital hand anomalies. Handchir Mikrochir Plast Chir 36(3):85–97

    CAS  PubMed  Google Scholar 

  • Schwabe GC, Tinschert S, Buschow C, Meinecke P, Wolff G, Gillessen-Kaesbach G, Oldridge M, Wilkie AO, Kömec R, Mundlos S (2000) Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am J Hum Genet 67(4):822–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shams I, Rohmann E, Eswarakumar VP, Lew ED, Yuzawa S, Wollnik B, Schlessinger J, Lax I (2007) Lacrimo-auriculo-dento-digital syndrome is caused by reduced activity of the fibroblast growth factor 10 (FGF10)-FGF receptor 2 signaling pathway. Mol Cell Biol 27(19):6903–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Si N, Liu Z, Liu F, Meng X, Zhang Y, Zhang X (2018) 17p13 3 genomic rearrangement in a Chinese family with split-hand/foot malformation with long bone deficiency: report of a complicated duplication with marked variation in phenotype. Orphanet J Rare Dis 13(1):106

    Article  PubMed  PubMed Central  Google Scholar 

  • Simeone A, Acampora D, Pannese M, D’Esposito M, Stornaiuolo A, Gulisano M, Mallamaci A, Kastury K, Druck T, Huebner K (1994) Cloning and characterization of two members of the vertebrate Dlx gene family. Proc Natl Acad Sci 91(6):2250–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skoll PJ, Silfen R, Hudson DA, Bloch CE (2000) Mirror foot. Plast Reconstr Surg 105(6):2086–2088

    Article  CAS  PubMed  Google Scholar 

  • Standring S (2015) Gray’s anatomy e-book. In: Stranding S (ed) The anatomical basis of clinical practice. Elsevier Health Sciences, New york

    Google Scholar 

  • Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature 368:639–643

    Article  CAS  PubMed  Google Scholar 

  • Sugarman GI, Hager D, Kulik WJ (1974) A new syndrome of brachydactyly of the hands and feet with duplication of the first toes. Birth Defects Orig Artic Ser 10(5):1–8

    CAS  PubMed  Google Scholar 

  • Summerbell D (1974) A quantitative analysis of the effect of excision of the AER from the chick limb-bud A quantitative ananlysis of effect of excision of the AER from the chick limb bud. J Embryol Exp Morphol 32:651–660

    CAS  PubMed  Google Scholar 

  • Sun M, Ma F, Zeng X, Liu Q, Zhao XL, Wu FX, Wu GP, Zhang ZF, Gu B, Zhao YF, Tian SH (2008) Triphalangeal thumb–polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J Med Genet 45(9):589–595

    Article  CAS  PubMed  Google Scholar 

  • Tackels-Horne D, Toburen A, Sangiorgi E, Gurrieri F, De Mollerat X, Fischetto R, Causio F, Clarkson K, Stevenson RE, Schwartz CE (2001) Split hand/split foot malformation with hearing loss: first report of families linked to the SHFM1 locus in 7q21. Clin Genet 59(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127(10):2227–2238

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi JK, Koshiba-Takeuchi K, Matsumoto K, Vogel-Höpker A, Naitoh-Matsuo M, Ogura K, Takahashi N, Yasuda K, Ogura T (1999) Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398(6730):810–814

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi JK, Koshiba-Takeuchi K, Suzuki T, Kamimura M, Ogura K, Ogura T (2003) Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade. Development 130:2729–2739

    Article  CAS  PubMed  Google Scholar 

  • Tayebi N, Jamsheer A, Flöttmann R, Sowinska-Seidler A, Doelken SC, Oehl-Jaschkowitz B, Hülsemann W, Habenicht R, Klopocki E, Mundlos S, Spielmann M (2014) Deletions of exons with regulatory activity at the DYNC1I1 locus are associated with split-hand/split-foot malformation: array CGH screening of 134 unrelated families. Orphanet J Rare Dis 9(1):108

    Article  PubMed  PubMed Central  Google Scholar 

  • Temtamy SA, McKusick VA (1978) The genetics of hand malformations. Alan R. Liss. Inc., New York, pp 187–299

    Google Scholar 

  • Temtamy SA. 1990. Polydactyly, postaxial. Birth defects encyclopedia (ML Buyse, editor). Blackwell Scientific, Cambridge, Massachusetts. 1397–8.

  • Theisen A, Rosenfeld JA, Shane K, McBride KL, Atkin JF, Gaba C, Hoo J, Kurczynski TW, Schnur RE, Coffey LB, Zackai EH (2010) Refinement of the region for split hand/foot malformation 5 on 2q31 1. Mol Syndromol 1(5):262–271

    Article  CAS  PubMed  Google Scholar 

  • Tickle C (2003) Patterning systems—from one end of the limb to the other. Dev Cell 4:449–458

    Article  CAS  PubMed  Google Scholar 

  • Tickle C (2003) Patterning systems—from one end of the limb to the other. Dev Cell 4(4):449–458

    Article  CAS  PubMed  Google Scholar 

  • Ugur SA, Tolun A (2008) Homozygous WNT10b mutation and complex inheritance in split-hand/foot malformation. Hum Mol Genet 17(17):2644–2653

    Article  CAS  PubMed  Google Scholar 

  • Ul Haque MF, Uhlhaas S, Knapp M, Schüler H, Friedl W, Ahmad M, Propping P (1993) Mapping of the gene for X-chromosomal split-hand/split-foot anomaly to Xq26–q26 1. Hum Genet 91(1):17–19

    CAS  Google Scholar 

  • Ullah A, Hammid A, Umair M, Ahmad W (2017) A novel heterozygous intragenic sequence variant in DLX6 probably underlies first case of autosomal dominant split-hand/foot malformation type 1. Mol Syndromol 8(2):79–84

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Gul A, Umair M, Ahmad F, Aziz A, Wali A, Ahmad W (2018) Homozygous sequence variants in the WNT10B gene underlie split hand/foot malformation. Genet Mol Biol 41(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah I, Kakar N, Schrauwen I, Hussain S, Chakchouk I, Liaqat K, Acharya A, Wasif N, Santos-Cortez RL, Khan S, Aziz A (2019) Variants in KIAA0825 underlie autosomal recessive postaxial polydactyly. Hum Genet 138(6):593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umair M, Shah K, Alhaddad B, Haack TB, Graf E, Strom TM, Meitinger T, Ahmad W (2017) Exome sequencing revealed a splice site variant in the IQCE gene underlying post-axial polydactyly type A restricted to lower limb. Eur J Hum Genet 25(8):960–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umair M, Ahmad F, Bilal M, Ahmad W, Alfadhel M (2018a) Clinical genetics of polydactyly: an updated review. Front Genet 6(9):447

    Article  CAS  Google Scholar 

  • Umair M, Ullah A, Abbas S, Ahmad F, Basit S, Ahmad W (2018b) First direct evidence of involvement of a homozygous loss-of-function variant in the EPS15L1 gene underlying split-hand/split-foot malformation. Clin Genet 93(3):699–702

    Article  CAS  PubMed  Google Scholar 

  • Van Silfhout AT, van den Akker PC, Dijkhuizen T, Verheij JB, Olderode-Berends MJ, Kok K, Sikkema-Raddatz B, van Ravenswaaij-Arts CM (2009) Split hand/foot malformation due to chromosome 7q aberrations (SHFM1): additional support for functional haploinsufficiency as the causative mechanism. Eur J Hum Genet 17(11):1432–1438

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaudin P, Delanoue R, Davidson I, Silber J, Zider A (1999) TONDU (TDU), a novel human protein related to the product of vestigial (vg) gene of Drosophila melanogaster interacts with vertebrate TEF factors and substitutes for Vg function in wing formation. Development 126(21):4807–4816

    Article  CAS  PubMed  Google Scholar 

  • Vogel A, Rodriguez C, Izpisúa-Belmonte JC (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122(6):1737–1750

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Chan DC, Leder P (1997) The Mouseformin (Fmn) Gene: Genomic Structure, Novel Exons, and Genetic Mapping. Genomics 39(3):303–311

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Tian SH, Shi YZ, Zhou PT, Wang ZY, Shu RZ, Hu L, Kong X (2007) A single C to T transition in intron 5 of LMBR1 gene is associated with triphalangeal thumb-polysyndactyly syndrome in a Chinese family. Biochem Biophys Res Commun 355(2):312–317

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Fu WN, Li-Ling J, Li ZG, Li LY, Sun KL (2008) HOXD13 may play a role in idiopathic congenital clubfoot by regulating the expression of FHL1. Cytogenet Genome Res 121(3–4):189–195

    Article  CAS  PubMed  Google Scholar 

  • Wassel HD (1969) 22 The Results of Surgery for Polydactyly of the Thumb: a Review. Clin Orthop Relat Res 64:175–193

    CAS  PubMed  Google Scholar 

  • Wellik DM (2007) Hox patterning of the vertebrate axial skeleton. Dev Dyn off Publ Am Assoc Anat 236(9):2454–2463. https://doi.org/10.1002/dvdy.21286

    Article  CAS  Google Scholar 

  • Wellik DM (2009) Hox genes and vertebrate axial pattern. Curr Top Dev Biol 88:257–278

    Article  CAS  PubMed  Google Scholar 

  • Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301(5631):363–367

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek D, Pawlik B, Li Y, Akarsu NA, Caliebe A, May KJ, Schweiger B, Vargas FR, Balci S, Gillessen-Kaesbach G, Wollnik B (2010) A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum Mutat 31(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Witters I, Van Bokhoven H, Goossens A, Van Assche FA, Fryns JP (2001) Split-hand/split-foot malformation with paternal mutation in the p63 gene. Pren Diagn Publ Affil Int Soc Pren Diagn 21(13):1119–1122

    CAS  Google Scholar 

  • Wobser AM, Adkins Z, Wobser RW (2020) Anatomy, Abdomen and Pelvis, Bones (Ilium, Ischium, and Pubis). StatPearls, Treasure Island

    Google Scholar 

  • Wu L, Liang D, Niikawa N, Ma F, Sun M, Pan Q, Long Z, Zhou Z, Yoshiura KI, Wang H, Sato D (2009) A ZRS duplication causes syndactyly type IV with tibial hypoplasia. Am J Med Genet A 149(4):816–818

    Article  Google Scholar 

  • Xiang Y, Bian J, Wang Z, Xu Y, Fu Q (2016) Clinical study of 459 polydactyly cases in China, 2010 to 2014. Congenit Anom 56(5):226–232

    Article  Google Scholar 

  • Xiang R, Du R, Guo S, Jin JY, Fan LL, Tang JY, Zhou ZB (2017) Microduplications of 10q24 detected in two Chinese patients with split-hand/foot malformation Type 3. Ann Clin Lab Sci 47(6):754–757

    CAS  PubMed  Google Scholar 

  • Xu B, Wellik DM (2011) Axial Hox9 activity establishes the posterior field in the developing forelimb. Proc Natl Acad Sci USA 108(12):4888–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Hrycaj SM, McIntyre DC, Baker NC, Takeuchi JK, Jeannotte L et al (2013) Hox5 interacts with Plzf to restrict Shh expression in the developing forelimb. Proc Natl Acad Sci USA 110(48):19438–19443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zheng Z, Cai H, Li H, Ye X, Zhang X, Wang Z, Fu Q (2016) Three novel missense mutations in the filamin B gene are associated with isolated congenital talipes equinovarus. Hum Genet 135(10):1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Tian Y, Breedveld G, Huang S, Zou Y, Jue Y, Chai J, Li H, Li M, Oostra BA, Lo WH (2002) Postaxial polydactyly type A/B (PAP-A/B) is linked to chromosome 19p13 1–132 in a Chinese kindred. Eur J Hum Genet 10(3):162–166

    Article  PubMed  Google Scholar 

  • Zhao X, Sun M, Zhao J, Leyva JA, Zhu H, Yang W, Zeng X, Ao Y, Liu Q, Liu G, Lo WH (2007) Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome. Am J Hum Genet 80(2):361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zionts LE, Jew MH, Ebramzadeh E, Sangiorgio SN (2017) The influence of sex and laterality on clubfoot severity. J Pediatr Orthop 37(2):e129–e133

    Article  PubMed  Google Scholar 

  • Zuniga A, Haramis AP, McMahon AP, Zeller R (1999) Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nat Lond 401(6753):598–602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to our lab members for their valuable suggestions and help in finding relevant literature.

Funding

NA.

Author information

Authors and Affiliations

Authors

Contributions

SA, MZA and MM have gathered all the scientific information and classified them. FAM helped in technical review and improvement of manuscript language. MAK conceptualized and supervised the data analysis, interpretation and manuscript drafting. All the authors have read, edited and approved the final version of manuscript.

Corresponding author

Correspondence to Muzammil Ahmad Khan.

Ethics declarations

Conflict of interests

All the authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

NA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Ali, M.Z., Muzammal, M. et al. The molecular genetics of human appendicular skeleton. Mol Genet Genomics 297, 1195–1214 (2022). https://doi.org/10.1007/s00438-022-01930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01930-1

Keywords

Navigation