Skip to main content
Log in

An integrated approach to understand fluid shear stress-driven and reactive oxygen species-mediated metastasis of colon adenocarcinoma through mRNA-miRNA-lncRNA-circRNA networks

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Development of colon adenocarcinoma (COAD) metastasis involves several mediators including fluid shear stress (FSS), intracellular ROS levels, and non-coding RNAs. In our present study, we identified and investigated the role of regulatory non-coding RNA molecules specifically involved in COAD metastasis and their association with FSS and ROS. Interactions between the mRNAs associated with FSS and ROS, the corresponding microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in COAD metastasis were used to generate the mRNA-miRNA-lncRNA-circRNA network. Experimental validation of the identified RNA hubs using quantitative real-time PCR demonstrated a direct effect of the FSS on their expression levels in cancer cells. FSS resulted in the downregulation of HMGA1 and RAN, as well as the upregulation of HSP90AA1, PMAIP1 and BIRC5. Application of shear stress also led to downregulation of hsa-miR-26b-5p and hsa-miR-34a-5p levels in HCT116 cells. Further, functional enrichment and survival analysis of the significant miRNAs, as well as the OncoPrint and the survival analyses of the selected mRNAs were performed. Subsequently, their functional role was also corroborated with existing literature. Ten significant miRNA hubs were identified, out of which hsa-miR-17-5p and hsa-miR-20a-5p were found to interact with lncRNA (CCAT2) while hsa-miR-335 was found to interact with four circRNAs. Fifteen significant miRNAs were identified in 10 different modules suggesting their importance in FSS and ROS-mediated COAD metastasis. Finally, 10 miRNAs and 3 mRNAs associated with FSS and/or ROS were identified as significant overall survival markers; 33 mRNAs were also identified as metastasis-free survival markers whereas 15 mRNAs showed > 10% gene alterations in TCGA-COAD data and may serve as promising therapeutic biomarkers in the COAD metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COAD:

Colon adenocarcinoma

GO:

Gene Ontology

FSS:

Fluid shear stress

ROS:

Reactive oxygen species

HCMDB:

Human cancer metastasis database

GEPIA:

Gene expression profiling interactive analysis

DE:

Differentially expressed

dbDEMC:

Database of differentially expressed microRNAs

TCGA:

The Cancer Genome Atlas

miRNA:

MicroRNA

lncRNA:

Long coding RNA

circRNA:

Circular RNA

miEAA:

MicroRNA Enrichment Analysis and Annotation

References

  • Agarwal E, Brattain MG, Chowdhury S (2013) Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell Signal 25:1711–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Portoles C, Feliu J, Reglero G, Ramirez de Molina A (2018) ABCA1 overexpression worsens colorectal cancer prognosis by facilitating tumour growth and caveolin-1-dependent invasiveness, and these effects can be ameliorated using the BET inhibitor apabetalone. Mol Oncol 12:1735–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backes C, Khaleeq QT, Meese E, Keller A (2016) miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res 44:W110-116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Karunagaran D (2019) An integrated approach for mining precise RNA-based cervical cancer staging biomarkers. Gene 712:143961

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Kalyani Yabalooru SR, Karunagaran D (2020) Identification of mRNA and non-coding RNA hubs using network analysis in organ tropism regulated triple negative breast cancer metastasis. Comput Biol Med 127:104076

    Article  CAS  PubMed  Google Scholar 

  • Barnes JM, Nauseef JT, Henry MD (2012) Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS ONE 7:e50973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolha L, Ravnik-Glavac M, Glavac D (2017) Long Noncoding RNAs as Biomarkers in Cancer. Dis Markers 2017:7243968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7:147–154

    Article  CAS  PubMed  Google Scholar 

  • Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, Byrom D, Riera A, Rossell D, Mangues R, Massague J, Sancho E, Batlle E (2012) Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–388

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Elfiky A, Han M, Chen C, Saif MW (2014) The role of Src in colon cancer and its therapeutic implications. Clin Colorectal Cancer 13:5–13

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Cai G, Liao Z, Lin K, Li G, Li Y (2019a) miRNA-766 induces apoptosis of human colon cancer cells through the p53/Bax signaling pathway by MDM4. Exp Ther Med 17:4100–4108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Ren R, Wan D, Wang Y, Xue X, Jiang M, Shen J, Han Y, Liu F, Shi J, Kuang Y, Li W, Zhi Q (2019b) Hsa_circ_101555 functions as a competing endogenous RNA of miR-597-5p to promote colorectal cancer progression. Oncogene 38:6017–6034

    Article  CAS  PubMed  Google Scholar 

  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(Suppl 4):S11

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, Hong K, Kim JH, Yee C, Lee KM, Cho SG (2019) Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3beta activities. Breast Cancer Res 21:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Cima I, Kong SL, Sengupta D, Tan IB, Phyo WM, Lee D, Hu M, Iliescu C, Alexander I, Goh WL, Rahmani M, Suhaimi NA, Vo JH, Tai JA, Tan JH, Chua C, Ten R, Lim WJ, Chew MH, Hauser CA, van Dam RM, Lim WY, Prabhakar S, Lim B, Koh PK, Robson P, Ying JY, Hillmer AM, Tan MH (2016) Tumor-derived circulating endothelial cell clusters in colorectal cancer. Sci Transl Med 8:345ra389

    Article  CAS  Google Scholar 

  • Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42

    Article  PubMed  Google Scholar 

  • Fang Y, Fullwood MJ (2016) Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14:42–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Fosselteder J, Calin GA, Pichler M (2018) Long non-coding RNA CCAT2 as a therapeutic target in colorectal cancer. Expert Opin Ther Targets 22:973–976

    Article  CAS  PubMed  Google Scholar 

  • Fu A, Ma S, Wei N, Tan BX, Tan EY, Luo KQ (2016) High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget 7:50239–50257

    Article  PubMed  PubMed Central  Google Scholar 

  • Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 104:144–164

    Article  CAS  PubMed  Google Scholar 

  • Galperin MY, Fernández-Suárez XM, Rigden DJ (2017) The 24th annual Nucleic Acids Research database issue: a look back and upcoming changes. Nucleic Acids Res 45:5627–5627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:l1

    Article  CAS  Google Scholar 

  • Gao Z, Fu P, Yu Z, Zhen F, Gu Y (2019) Comprehensive analysis of lncRNA-miRNA-mRNA network ascertains prognostic factors in patients with colon cancer. Technol Cancer Res Treat 18:1533033819853237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami CP, Nakshatri H (2014) PROGgeneV2: enhancements on the existing database. BMC Cancer 14:970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  • Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Hentze MW, Preiss T (2013) Circular RNAs: splicing’s enigma variations. EMBO J 32:923–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CW, Chen YT, Tsai HL, Yeh YS, Su WC, Ma CJ, Tsai TN, Wang JY (2017) EGFR expression in patients with stage III colorectal cancer after adjuvant chemotherapy and on cancer cell function. Oncotarget 8:114663–114676

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Hu X, He W, Zhao Y, Hao S, Wu Q, Li S, Zhang S, Shi M (2018) Fluid shear stress and tumor metastasis. Am J Cancer Res 8:763–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia B, Xia L, Cao F (2018) The role of miR-766-5p in cell migration and invasion in colorectal cancer. Exp Ther Med 15:2569–2574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jing X, Liang H, Cui X, Han C, Hao C, Huo K (2017) Long noncoding RNA CCAT2 can predict metastasis and a poor prognosis: a meta-analysis. Clin Chim Acta 468:159–165

    Article  CAS  PubMed  Google Scholar 

  • Kang T, Park C, Meghani N, Tran TTD, Tran PHL, Lee BJ (2020) Shear stress-dependent targeting efficiency using self-assembled gelatin-oleic nanoparticles in a biomimetic microfluidic system. Pharmaceutics 12:555

    Article  CAS  PubMed Central  Google Scholar 

  • Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM, Park C, Kim K, Lee S, Gumbiner BM, Yook JI, Weiss SJ (2011) p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 4:ra71

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kim CW, Simmons RD, Jo H (2014) Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 34:2206–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan J, Huang Z, Han J, Shao J, Huang C (2018) Redox regulation of microRNAs in cancer. Cancer Lett 418:250–259

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Lin TE, Lee CI, Zhou J, Huang YH, Lee PL, Shih YT, Chien S, Chiu JJ (2017) MicroRNA-10a is crucial for endothelial response to different flow patterns via interaction of retinoid acid receptors and histone deacetylases. Proc Natl Acad Sci USA 114:2072–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H (2013) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Sun Z, Liu B, Shan Y, Zhao L, Jia L (2017) Tumor-suppressive miR-26a and miR-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer. Cell Death Dis 8:e2892–e2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Xia L, Zhou Z, Zuo Z, Xu C, Song H, Cai J (2018) MiR-186-5p upregulation inhibits proliferation, metastasis and epithelial-to-mesenchymal transition of colorectal cancer cell by targeting ZEB1. Arch Biochem Biophys 640:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lien SC, Chang SF, Lee PL, Wei SY, Chang MD, Chang JY, Chiu JJ (2013) Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta 1833:3124–3133

    Article  CAS  PubMed  Google Scholar 

  • Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, Nishida N, Gafa R, Song J, Guo Z, Ivan C, Barbarotto E, De Vries I, Zhang X, Ferracin M, Churchman M, van Galen JF, Beverloo BH, Shariati M, Haderk F, Estecio MR, Garcia-Manero G, Patijn GA, Gotley DC, Bhardwaj V, Shureiqi I, Sen S, Multani AS, Welsh J, Yamamoto K, Taniguchi I, Song MA, Gallinger S, Casey G, Thibodeau SN, Le Marchand L, Tiirikainen M, Mani SA, Zhang W, Davuluri RV, Mimori K, Mori M, Sieuwerts AM, Martens JW, Tomlinson I, Negrini M, Berindan-Neagoe I, Foekens JA, Hamilton SR, Lanza G, Kopetz S, Fodde R, Calin GA (2013) CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res 23:1446–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Fu A, Chiew GG, Luo KQ (2017) Hemodynamic shear stress stimulates migration and extravasation of tumor cells by elevating cellular oxidative level. Cancer Lett 388:239–248

    Article  CAS  PubMed  Google Scholar 

  • Makondi PT, Wei PL, Huang CY, Chang YJ (2019) Development of novel predictive miRNA/target gene pathways for colorectal cancer distance metastasis to the liver using a bioinformatic approach. PLoS ONE 14:e0211968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin T, Gongol B, Chen Z, Woo B, Subramaniam S, Chien S, Shyy JY (2013) Mechanosensitive microRNAs-role in endothelial responses to shear stress and redox state. Free Radic Biol Med 64:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  • Mitchell MJ, King MR (2013) Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors. New J Phys 15:015008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama M, Oshima M (2018) Mutant p53 in colon cancer. J Mol Cell Biol 11:267–276

    Article  PubMed Central  CAS  Google Scholar 

  • Neth P, Nazari-Jahantigh M, Schober A, Weber C (2013) MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 99:294–303

    Article  CAS  PubMed  Google Scholar 

  • Northcott JM, Dean IS, Mouw JK, Weaver VM (2018) Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Okumura K, Huang S, Sinicrope FA (2008) Induction of Noxa sensitizes human colorectal cancer cells expressing Mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737. Clin Cancer Res 14:8132–8142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson MF, Sahai E (2009) The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 26:273–287

    Article  PubMed  Google Scholar 

  • Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T, Hatzigeorgiou AG (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44:D231-238

    Article  CAS  PubMed  Google Scholar 

  • Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG (2011) Using graph theory to analyze biological networks. BioData Min 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, Li H (2017) The emerging landscape of circular RNA in life processes. RNA Biol 14:992–999

    Article  PubMed  Google Scholar 

  • Regmi S, Fung TS, Lim S, Luo KQ (2018) Fluidic shear stress increases the anti-cancer effects of ROS-generating drugs in circulating tumor cells. Breast Cancer Res Treat 172:297–312

    Article  CAS  PubMed  Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  • Saei H, Govahi A, Abiri A, Eghbali M, Abiri M (2021) Comprehensive transcriptome mining identified the gene expression signature and differentially regulated pathways of the late-onset preeclampsia. Pregnancy Hypertens 25:91–102

    Article  PubMed  Google Scholar 

  • Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7:e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9:e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Jackstadt R, Siemens H, Li H, Kirchner T, Hermeking H (2014) p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res 74:532–542

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34

    Article  PubMed  Google Scholar 

  • Staudacher JJ, Bauer J, Jana A, Tian J, Carroll T, Mancinelli G, Ozden O, Krett N, Guzman G, Kerr D, Grippo P, Jung B (2017) Activin signaling is an essential component of the TGF-beta induced pro-metastatic phenotype in colorectal cancer. Sci Rep 7:5569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su G, Morris JH, Demchak B, Bader GD (2014) Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics 47:11–24

    Article  Google Scholar 

  • Sun P, Zhu X, Shrubsole MJ, Ness RM, Hibler EA, Cai Q, Long J, Chen Z, Li G, Hou L, Smalley WE, Edwards TL, Giovannucci E, Zheng W, Dai Q (2017) Genetic variation in SLC7A2 interacts with calcium and magnesium intakes in modulating the risk of colorectal polyps. J Nutr Biochem 47:35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sungwan P, Lert-Itthiporn W, Silsirivanit A, Klinhom-On N, Okada S, Wongkham S, Seubwai W (2021) Bioinformatics analysis identified CDC20 as a potential drug target for cholangiocarcinoma. PeerJ 9:e11067

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos I-L, Maniou S, Karathanou K, Kalfakakou D, Fevgas A, Dalamagas T, Hatzigeorgiou AG (2014) DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43:D153–D159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Wang X, Liu F, Fu Y (2017) microRNA-335 inhibits colorectal cancer HCT116 cells growth and epithelial-mesenchymal transition (EMT) process by targeting Twist1. Pharmazie 72:475–481

    CAS  PubMed  Google Scholar 

  • Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong WT, Ma S, Tian XY, Gonzalez AB, Ebong EE, Shen H (2016) Targeted delivery of shear stress-inducible micrornas by nanoparticles to prevent vulnerable atherosclerotic lesions. Methodist Debakey Cardiovasc J 12:152–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Hui H, Wang LJ, Wang H, Liu QF, Han SX (2015) MicroRNA-326 functions as a tumor suppressor in colorectal cancer by targeting the nin one binding protein. Oncol Rep 33:2309–2318

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Li ZH, Bi YH (2019) MicroRNA-889 promotes cell proliferation in colorectal cancer by targeting DAB2IP. Eur Rev Med Pharmacol Sci 23:3326–3334

    CAS  PubMed  Google Scholar 

  • Xu W, Zhang Z, Zou K, Cheng Y, Yang M, Chen H, Wang H, Zhao J, Chen P, He L, Chen X, Geng L, Gong S (2017) MiR-1 suppresses tumor cell proliferation in colorectal cancer by inhibition of Smad3-mediated tumor glycolysis. Cell Death Dis 8:e2761–e2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Wu L, Wang A, Tang W, Zhao Y, Zhao H, Teschendorff AE (2017) dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 45:D812–D818

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Zeng X, Ai Z, Yu M, Wu Y, Li S (2020) Construction and analysis of a lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in oral cancer. BMC Med Genomics 13:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo HI, Kim BK, Yoon SK (2016) MicroRNA-330-5p negatively regulates ITGA5 expression in human colorectal cancer. Oncol Rep 36:3023–3029

    Article  CAS  PubMed  Google Scholar 

  • Zaki N, Efimov D, Berengueres J (2013) Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics 14:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilstra J, Joosten SP, Wensveen FM, Dessing MC, Schutze DM, Eldering E, Spaargaren M, Pals ST (2011) WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer. Biochem Biophys Res Commun 406:1–6

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang J (2017) MicroRNAs are important regulators of drug resistance in colorectal cancer. Biol Chem 398:929–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Tong J, Huang G (2013) Nicotinamide phosphoribosyl transferase (Nampt) is a target of microRNA-26b in colorectal cancer cells. PLoS ONE 8:e69963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Kim K, Li X, Moreno M, Sharp T, Goodheart MJ, Safe S, Dupuy AJ, Amendt BA (2014) MicroRNA-26b represses colon cancer cell proliferation by inhibiting lymphoid enhancer factor 1 expression. Mol Cancer Ther 13:1942–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Xie H, Liang D, Huang L, Liang F, Qi Q, Yang X (2018) Long non-coding RNA CCAT1 as a diagnostic and prognostic molecular marker in various cancers: a meta-analysis. Oncotarget 9:23695–23703

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang R, Wang M (2019) miR-331-3p suppresses cell invasion and migration in colorectal carcinoma by directly targeting NRP2. Oncol Lett 18:6501–6508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Ma Y, Zou Y, Yin A, Li W, Dong D (2017) HCMDB: the human cancer metastasis database. Nucleic Acids Res 46:D950–D955

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Swagatika Sahoo, Department of Chemical Engineering, IIT Madras, India and Dr. Karthik Raman, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, India for providing invaluable inputs to fine-tune and strengthen the analysis. We would also like to thank Priyanshu Sharma and Anand Kumar Patel, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, India for providing useful suggestions in the analysis of real-time PCR results.

Author information

Authors and Affiliations

Authors

Contributions

SK and SB conceptualized the work, processed the data and performed the network analysis. SK and SO performed the real-time PCR experiments and analyzed the data. DK and GK oversaw the work and provided directions to improve it. All the authors worked on the manuscript together.

Corresponding author

Correspondence to Satarupa Banerjee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Martine Collart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

438_2022_1924_MOESM1_ESM.docx

Supplementary file1 Supplementary Fig. 1a: Top 5 most significant Reactome pathways enriched with common miRNA interacting partners of FSS, ROS and HCMDB-COAD (p-value ≤ 0.05). Supplementary Fig. 1b: Top 5 most significant Gene Ontology terms enriched with common miRNA interacting partners of FSS, ROS and HCMDB-COAD (p-value ≤ 0.05). Supplementary Fig. 2a: ROS mRNA-mRNA-miRNA network. Supplementary Fig. 2b: FSS mRNA-mRNA-miRNA network. Supplementary Fig. 2c: HCMDB-COAD mRNA-mRNA-miRNA network. Supplementary Fig. 2d: Merged FRM mRNA-mRNA-miRNA network. Supplementary Fig. 3a: Degree based top 20 RNA hubs of ROS mRNA-mRNA-miRNA network. Supplementary Fig. 3b: Degree based top 20 RNA hubs of FSS mRNA-mRNA-miRNA network. Supplementary Fig. 3c: Degree based top 20 RNA hubs of HCMDB-COAD mRNA-mRNA-miRNA network. Supplementary Fig. 4: InteractiVenn diagram representing mRNA from degree-based top 20 hubs of individual FSS, ROS, HCMDB-COAD, merged FRM mRNA-mRNA-miRNA networks and the DE genes in COAD (GEPIA-TCGA-COAD). Supplementary Fig. 5: FRM COAD mRNA-miRNA-lncRNA-circRNA network. Supplementary Fig. 6: FRM COAD DE mRNA-DE miRNA-DE lncRNA-DE circRNA expression network. Supplementary Fig. 7: Module analysis using FRM mRNA-mRNA-miRNA network as the input: Extraction of modules showing direct association of identified miRNAs with either ROS and HCMDB-COAD or FSS and HCMDB-COAD. Supplementary Fig. 8: OncoPrint analysis of nine significant mRNAs associated with FSS, ROS, and HCMDB-COAD obtained using MSKCC metastasis data. (DOCX 2458 KB)

438_2022_1924_MOESM2_ESM.xlsx

Supplementary file2 Supplementary Table 1: Common and unique genes obtained from the InteractiVenn diagram representing genes associated with FSS, ROS, HCMDB-COAD and the DE genes in COAD (GEPIA-TCGA-COAD). Supplementary Table 2: Role of FSS- and ROS-associated genes in COAD metastasis based on a literature survey. Supplementary Table 3: List of 134 DE miRNAs (DE-miRs) – common among [DE miR COAD-FSS] and [DE miR COAD-ROS] and [DE miR COAD-HCMDB COAD]. Supplementary Table 4: Common miRNA-enriched pathways and their role in COAD metastasis based on a literature survey. Supplementary Table 5: List of miRNAs directly associated with FSS and ROS based on miEAA result data. Supplementary Table 6: Degree-based top 20 RNA hubs of ROS mRNA-mRNA-miRNA network. Supplementary Table 7: Degree-based top 20 RNA hubs of FSS mRNA-mRNA-miRNA network. Supplementary Table 8: Degree-based top 20 RNA hubs of HCMDB-COAD mRNA-mRNA-miRNA network. Supplementary Table 9: Degree-based top 20 RNA hubs of merged FRM mRNA-mRNA-miRNA network. Supplementary Table 10: Common mRNAs among top 20 degree-based hubs of individual FSS, ROS, HCMDB-COAD, FRM mRNA-mRNA-miRNA networks and the DE genes in COAD (GEPIA-TCGA-COAD). Supplementary Table 11: Degree-based top 20 RNA hubs of FRM COAD mRNA-miRNA- lncRNA-circRNA network. Supplementary Table 12: Degree-based top 20 RNA hubs of FRM COAD DE mRNA-DE miRNA-DE lncRNA-DE circRNA network. Supplementary Table 13: Variation of metastasis-free survival status of COAD patients with the expression levels of significant mRNAs associated with FSS and ROS. Supplementary Table 14: Variation of survival status of COAD patients with the expression levels of significant miRNAs and mRNAs associated with FSS and ROS using TCGA data. Supplementary Table 15: List of primers used in reverse transcription (RT) and quantitative real-time PCR (qRT-PCR) (XLSX 119 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KrishnaPriya, S., Omer, S., Banerjee, S. et al. An integrated approach to understand fluid shear stress-driven and reactive oxygen species-mediated metastasis of colon adenocarcinoma through mRNA-miRNA-lncRNA-circRNA networks. Mol Genet Genomics 297, 1353–1370 (2022). https://doi.org/10.1007/s00438-022-01924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01924-z

Keywords

Navigation