Skip to main content
Log in

Characteristics of the TDRD1 gene promoter in chickens

  • Methods Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Tudor domain containing 1 (TDRD1) is a member of the TDRD family and plays an important role in embryogenesis and gametogenesis. A detailed study of the characteristics of chicken TDRD1 can lay a foundation for the study of chicken spermatogonia stem cell formation and spermatogenesis. We cloned 2117 bp upstream fragment of TDRD1 promoter and constructed a series of recombinant vectors with different length deletions. The dual-luciferase experiments reveal that the upstream region of – 161 to 0 bp was its core transcription promoter region. Bioinformatics analysis predicted the possible binding of Transcription Factor 7 Like 2 (TCF7L2) and Zinc Finger E-Box-Binding Homeobox 1(ZEB1) transcription factors in the core region. The transcriptional activity of TDRD1 was significantly decreased after mutation of TCF7L2-binding site, while that of TDRD1 was significantly increased after mutation of ZEB1-binding site. Further, ChIP experiments verified that TCF7L2 enriched in the TDRD1 core transcriptional initiation region, suggesting that TCF7L2 and ZEB1 play an important role in the regulation of TDRD1. In summary, the region from – 161 to 0 bp is the core promoter region of TDRD1; ZEB1 and TCF7L2 bind to the TDRD1 promoter region and TCF7L2 activates the transcription of TDRD1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boswell RE, Mahowald AP (1985) tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43:97–104

    Article  CAS  Google Scholar 

  • Brahms H (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B’ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7:1531–1542

    Article  CAS  Google Scholar 

  • Chuma S, Hiyoshi M, Yamamoto A, Hosokawa M, Takamune K, Nakatsuji N (2003) Mouse Tudor Repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech Dev 120:979–990

    Article  CAS  Google Scholar 

  • Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, Hiyoshi M, Takamune K, Noce T, Nakatsuji N (2006) Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci USA 103(43):15894–15899. https://doi.org/10.1073/pnas.0601878103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Côté J, Richard S (2005) Tudor domains bind symmetrical dimethylated arginines. J Biol Chem. https://doi.org/10.1074/jbc.M414328200

    Article  PubMed  Google Scholar 

  • Fickett JW, Wasserman WW (2000) Discovery and modeling of transcriptional regulatory regions. Curr Opin Biotechnol 11:19–24

    Article  CAS  Google Scholar 

  • Florez JC, Jablonski KA, Bayley N, Pollin T (2006) TCF7L2 polymorphisms and progression to diabetes in the diabetes prevention program. New Engl J Med. https://doi.org/10.1056/NEJMoa062418

    Article  PubMed  Google Scholar 

  • Frietze S, Wang R, Yao L, Tak YG, Ye Z, Gaddis M, Witt H, Farnham PJ, Jin VX (2012) Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3. Genome Biol 13:R52

    Article  CAS  Google Scholar 

  • Graham TR, Yacoub R, Taliaferro-Smith LT, Osunkoya AO, Odero-Marah VA, Liu T, Kimbro KS, Sharma D, O’Regan RM (2010) Reciprocal regulation of ZEB1 and AR in triple negative breast cancer cells. Breast Cancer Res Treat 123:139

    Article  CAS  Google Scholar 

  • Grant SFA, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  CAS  Google Scholar 

  • Grove EA (2011) Wnt signaling meets internal dissent. Genes Dev. https://doi.org/10.1101/gad.17594311

    Article  PubMed  PubMed Central  Google Scholar 

  • He N, Wang Y, Zhang C, Wang M, Wang Y, Zuo Q, Zhang Y, Li B (2018) Wnt signaling pathway regulates differentiation of chicken embryonic stem cells into spermatogonial stem cells via Wnt5a. J Cell Biochem 119(2):1689–1701

    Article  CAS  Google Scholar 

  • Huang HY, Houwing S, Kaaij LJT, Meppelink A, Redl S, Gauci S, Vos H, Draper BW, Moens CB, Burgering BM (2014) Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO J 30:3298–3308

    Article  Google Scholar 

  • Kleppe L, Wargelius A, Johnsen H, Andersson E, Edvardsen RB (2015) Gonad specific genes in Atlantic salmon (Salmon salar L.): Characterization of tdrd7-2, dazl-2, piwil1 and tdrd1 genes. Gene 560:217–225

    Article  CAS  Google Scholar 

  • Kojima K, Kuramochi-Miyagawa S, Chuma S, Tanaka T, Nakatsuji N, Kimura T, Nakano T (2009) Associations between PIWI proteins and TDRD1/MTR-1 are critical for integrated subcellular localization in murine male germ cells. Genes Cells. https://doi.org/10.1111/j.1365-2443.2009.01342.x

    Article  PubMed  Google Scholar 

  • Ohira T, Gemmill RM, Ferguson K, Kusy S, Roche J, Brambilla E, Zeng C, Baron A, Bemis L, Erickson P, Wilder E, Rustgi A, Kitajewski J, Gabrielson E, Bremnes R, Franklin W, Drabkin HA (2003) WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA 100(18):10429–10434. https://doi.org/10.1073/pnas.1734137100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poy F, Lepourcelet M, Shivdasani RA, Eck MJ (2001) Structure of a human Tcf4-beta-catenin complex. Nat Struct Biol 8:1053–1057

    Article  CAS  Google Scholar 

  • Sanders NBD, Michel M (2004) Transcriptional activation by the zinc-finger homeodomain protein delta EF1 in estrogen signaling cascades. DNA Cell Biol 23:25–34

    Article  Google Scholar 

  • Shaat N, Lernmark A, Karlsson E, Ivarsson S, Parikh H, Berntorp K, Groop L (2007) A variant in the transcription factor 7-like 2 (TCF7L2) gene is associated with an increased risk of gestational diabetes mellitus. Diabetologia 50:972–979

    Article  CAS  Google Scholar 

  • Shitashige M, Hirohashi S, Yamada T (2008) Wnt signaling inside the nucleus. Cancer Sci 99(4):631–637. https://doi.org/10.1111/j.1349-7006.2007.00716.x

    Article  CAS  PubMed  Google Scholar 

  • Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by β-catenin and glycogen synthase kinase-3β. J Biol Chem 280:1457–1464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the National Natural Science Foundation of China (31972547, 31772582, 32002158), Key Research and Development Program (2017YFE0108000) and China Postdoctoral Science Foundation (2020M681746). Finally, we are very grateful to our colleagues and teachers in the laboratory for their mutual help.

Author information

Authors and Affiliations

Authors

Contributions

XG, PX, XS, BL and QZ conceived and designed the study and contributed to the analysis and interpretation of data. XG, XS, PX, XS, MZ, XY, JJ and YZ were involved in drafting the manuscript and revising it for important intellectual content. QZ helped with the speech correction. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Bichun Li.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this article, and this article is approved by all authors for publication.

Additional information

Communicated by Joan Cerda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Sun, X., Xu, P. et al. Characteristics of the TDRD1 gene promoter in chickens. Mol Genet Genomics 297, 903–910 (2022). https://doi.org/10.1007/s00438-022-01886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01886-2

Keywords

Navigation