Skip to main content

Investigation on the characteristics of gut microbiota in critically endangered blue-crowned laughingthrush (Garrulax courtoisi)

Abstract

Blue-crowned laughingthrush (Garrulax courtoisi), passeriformes, is a critically endangered bird endemic to China. Gut microbiota is well known to play a pivotal role in host health and survival. Thus, the understanding of the microbial communities associated with Garrulax courtoisi could be beneficial to save this species from the brink of extinction. In this study, we used 16 s rDNA amplicon sequencing to investigate the gut community composition and microbial diversity of the Garrulax courtoisi population reared in Nanchang Zoo. The results showed that there were 31 phyla that were dominated by Firmicutes, Proteobacteria, Bacteroidetes, and Cyanobacteria in the intestine of Garrulax courtoisi. Compared with previous studies on birds, the Cyanobacteria exhibited an excessive abundance, which may be largely related to the personal lifestyle of Garrulax courtoisi. At the genus level, a total of 552 genera were identified, among which, 21 key genera constituted the core microbiome, including some culturable bacterial genera such as Lactobacillus, Acinetobacter, and Deinococcus. In the meanwhile, we found that there were remarkable intraspecific differences both in terms of microbial community structures, representative biomarkers and predicted functions between the parental generation and their offspring of the population investigated in this study. Furthermore, we also summarized their different eating behaviors and predicted its association with gut microbiota. This study provided the needed pieces of information about these extremely rare birds, Garrulax courtoisi, whose community composition and microbial diversity are hardly known. Importantly, these findings could contribute to our knowledge of the gut health of Garrulax courtoisi and advance the comprehensive conservation of this endangered bird.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The raw sequence data used in this manuscript have been deposited in the Genome Sequence Archive in National Genomics Data Center under accession number CRA004355 that are publicly accessible at https://ngdc.cncb.ac.cn/gsa.

References

  • Alcock J, Maley CC, Aktipis CA (2014) Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36:940–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Azad MAK, Sarker M, Li T, Yin J (2018) Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018:9478630

    PubMed  PubMed Central  Google Scholar 

  • BirdLife International (2018) Garrulax courtoisi. The IUCN Red List of Threatened Species 2018: e.T22732350A131890764. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22732350A131890764.en

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capunitan DC, Johnson O, Terrill RS, Hird SM (2020) Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol Ecol 29:829–847

    Article  CAS  PubMed  Google Scholar 

  • Carr VR, Shkoporov A, Hill C, Mullany P, Moyes DL (2021) Probing the mobilome: discoveries in the dynamic microbiome. Trends Microbiol 29:158–170

    Article  CAS  PubMed  Google Scholar 

  • Chang CW, Huang BH, Lin SM, Huang CL, Liao PC (2016) Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiol 16:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen G, Zheng C, Wan N, Liu D, Fu VWK, Yang X et al (2019) Low genetic diversity in captive populations of the critically endangered Blue-crowned Laughingthrush (Garrulax courtoisi) revealed by a panel of novel microsatellites. PeerJ 7:e6643

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CY, Chen CK, Chen YY, Fang A, Shaw GT, Hung CM et al (2020) Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests. Microbiome 8:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson GL, Raulo A, Knowles SCL (2020) Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol Evol 35:972–980

    Article  PubMed  Google Scholar 

  • Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S et al (2019) Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25:1096–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052

    Article  PubMed  Google Scholar 

  • Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37:23–43

    Article  CAS  PubMed  Google Scholar 

  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elderman M, de Vos P, Faas M (2018) Role of microbiota in sexually dimorphic immunity. Front Immunol 9:1018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elhosseiny NM, Attia AS (2018) Acinetobacter: an emerging pathogen with a versatile secretome. Emerg Microbes Infect 7:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould AL, Zhang VV, Lamberti L, Jones EW, Obadia B, Korasidis N et al (2018) Microbiome interactions shape host fitness. Proc Natl Acad Sci USA 115:E11951–E11960

    CAS  PubMed  PubMed Central  Google Scholar 

  • He FQ, Lin JS, Wen C, Lin Z, Shi QH, Huang HQ et al (2017) Prelim of biology of the blue-crowned Laughingthrush Garrulax courtoisi in Wuyuan of NE Jiangxi, SE China. Chin J Zool 52:167–175

    Google Scholar 

  • Jia Y, Jin S, Hu K, Geng L, Han C, Kang R et al (2021) Gut microbiome modulates Drosophila aggression through octopamine signaling. Nat Commun 12:2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J et al (2018) Best practices for analysing microbiomes. Nat Rev Microbiol 16:410–422

    Article  CAS  PubMed  Google Scholar 

  • Kropackova L, Tesicky M, Albrecht T, Kubovciak J, Cizkova D, Tomasek O et al (2017) Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol Ecol 26:5292–5304

    Article  PubMed  Google Scholar 

  • Li Y, Qiao Y (2008) Chinese Laughingthrushes. For Humankind 62–71

  • Lim S, Jung JH, Blanchard L, de Groot A (2019) Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 43:19–52

    Article  CAS  PubMed  Google Scholar 

  • Liu D (2017) A PCR-based Method for the Sex Identification of Blue-crowned Laughingthrush (Garrulax courtoisi). Master, Jiangxi Agricultural University

  • Liu X, Cao S, Zhang X (2015) Modulation of gut microbiota-brain axis by probiotics, prebiotics, and diet. J Agric Food Chem 63:7885–7895

    Article  CAS  PubMed  Google Scholar 

  • Liu PF, Li N, Zhang JL, Qin XX, Lou YQ, Sun YH (2018) Research status on the ecology of Laughingthrushes in China. Chin J Zool 53:292–301

    Google Scholar 

  • Liu T, Xu Y, Mo B, Shi J, Cheng Y, Zhang W et al (2020) Home range size and habitat use of the blue-crowned laughingthrush during the breeding season. PeerJ 8:e8785

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JB, Hsiao EY (2019) Microbiomes as sources of emergent host phenotypes. Science 365:1405–1408

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17:10–12

    Article  Google Scholar 

  • Matthews DM, Jenks SM (2013) Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Proc 96:27–35

    Article  Google Scholar 

  • Moeller AH, Sanders JG (2020) Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos Trans R Soc Lond B Biol Sci 375:20190597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  CAS  PubMed  Google Scholar 

  • Pagano M, Martins AF, Barth AL (2016) Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Braz J Microbiol 47:785–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS et al (2020) Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 11:5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596

    Article  CAS  PubMed  Google Scholar 

  • Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215

    Article  CAS  PubMed  Google Scholar 

  • Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF (2017) Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 179:223–244

    Article  CAS  PubMed  Google Scholar 

  • Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G et al (2014) Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:3654

    Article  CAS  PubMed  Google Scholar 

  • Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S et al (2018) A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 563:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF (2019) Microbiota and the social brain. Science 366:eaar2016

    Article  CAS  PubMed  Google Scholar 

  • Simon JC, Marchesi JR, Mougel C, Selosse MA (2019) Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley D, Hughes RJ, Moore RJ (2014) Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 98:4301–4310

    Article  CAS  PubMed  Google Scholar 

  • Trevelline BK, MacLeod KJ, Knutie SA, Langkilde T, Kohl KD (2018) In ovo microbial communities: a potential mechanism for the initial acquisition of gut microbiota among oviparous birds and lizards. Biol Lett 14:20180225

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuong HE, Yano JM, Fung TC, Hsiao EY (2017) The microbiome and host behavior. Annu Rev Neurosci 40:21–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waite DW, Taylor MW (2014) Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 5:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Waite DW, Taylor MW (2015) Exploring the avian gut microbiota: current trends and future directions. Front Microbiol 6:673

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HX, Wang YP (2016) Gut Microbiota-Brain Axis. Chin Med J (engl) 129:2373–2380

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D et al (2017) BugBase predicts organism-level microbiome phenotypes. bioRxiv. https://doi.org/10.1101/133462

    Article  Google Scholar 

  • Wilinski D, Winzeler J, Duren W, Persons JL, Holme KJ, Mosquera J et al (2019) Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster. Nat Commun 10:4052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong ACN, Wang QP, Morimoto J, Senior AM, Lihoreau M, Neely GG et al (2017a) Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr Biol 27:2397-2404.e4

    Article  CAS  PubMed  Google Scholar 

  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B (2017b) Clinical and pathophysiological overview of acinetobacter infections: a century of challenges. Clin Microbiol Rev 30:409–447

    Article  CAS  PubMed  Google Scholar 

  • Wu ZY, Liu DQ, Wang XH, Li DT, Huang HL (2016) Analysis of bule-crowned laughingthrush's research status. Mod Agri Sci Tech 294–295+300

  • Zhang W, Shi J, Huang H, Liu T (2017) The impact of disturbance from photographers on the Blue-crowned Laughingthrush (Garrulax courtoisi). Avian Conserv Ecol. https://doi.org/10.5751/ACE-01007-120115

    Article  Google Scholar 

  • Zhang Z, Yang Z, Zhu L (2021) Gut microbiome of migratory shorebirds: Current status and future perspectives. Ecol Evol 11:3737–3745

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of Nanchang Zoo for their help during the experiment and sampling procedures. We also thank Dr. Bin He for his kind help in revising this manuscript.

Funding

This work was funded by the National Natural Science Foundation of China (Grant no. 31760625) and the Science and Technology Project of Education Department of Jiangxi Province (Grant no. GJJ190581).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daoqiang Liu or Jianhua Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was conducted according to the guidelines of the management and utility of experimental animals, and approved by the Ethics Committee of Jiangxi Science and Technology Normal University, and all animal manipulations were strictly performed following the relevant laws of China.

Additional information

Communicated by Martine Collart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 569 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, J., Cheng, Y. et al. Investigation on the characteristics of gut microbiota in critically endangered blue-crowned laughingthrush (Garrulax courtoisi). Mol Genet Genomics 297, 655–670 (2022). https://doi.org/10.1007/s00438-022-01875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01875-5

Keywords

  • Garrulax courtoisi
  • Gut microbiota
  • Intraspecific differences
  • Eating behaviors
  • Population conservation