Skip to main content

Advertisement

Log in

Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Nik1 orthologs or group III hybrid histidine kinases (HHK3) represent a unique cytoplasmic osmosensor that act upstream of HOG/p38 MAPK pathway in fungi. It is an important molecular target for developing new antifungal agents against human pathogens. HHK3 orthologs contain a linear array of alternative HAMP and HAMP-like linker domains (poly-HAMP) in the N-terminal region. HAMP domains are quite common in prokaryotic histidine kinases where it mostly functions as signal transducer mediating conformational changes in the kinase domains. In contrast, poly-HAMP in HHK3 acts as a sensor and signal transducer to regulate histidine kinase activity. However, the mechanistic detail of this is poorly understood. Interestingly, recent studies indicate that the poly-HAMP-mediated regulation of the kinase activity varies among the orthologs. Hik1 is an important HHK3 ortholog from fungus Magnaporthe oryzae. In this paper, we aimed to decipher the role HAMP and HAMP-like linker domains in regulating the activity of Hik1p. We show that Hik1p acts as a bona fide osmosensor and negatively regulates the downstream HOG/p38 MAPK pathway in Saccharomyces cerevisiae. Our data suggest a differential role of the HAMP domains in the functionality of Hik1p. Most interestingly, the deletion of individual domains in poly-HAMP resulted in distinct active forms of Hik1p and thereby indicating that the poly-HAMP domain, instead of acting as on–off switch, regulates the histidine kinase activity by transition through multiple conformational states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HHK:

Hybrid histidine kinase

aa:

Amino acid

bp:

Base pair

Kb:

Kilo base

β-gal:

β-Galactosidase

References

  • Alex LA, Borkovich KA, Simon MI (1996) Hyphal development in Neurospora crassa, involvement of a two-component histidine kinase. Proc Natl Acad Sci USA 93:3416–3421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methylaccepting proteins is common to many prokaryotic signaling proteins. FEMS Microbiol Lett 176:111–116

    Article  PubMed  CAS  Google Scholar 

  • Avenot H, Simoneau P, Iacomi-Vasilescu B, Bataillé-Simoneau N (2005) Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Curr Genet 47:234–243

    Article  PubMed  CAS  Google Scholar 

  • Bahn YS, Kojima K, Cox GM, Heitman J (2006) A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell 17:3122–3135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandhorst TT, Kean IRL, Lawry SM, Wiesner DL, Klein BS (2019) Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity. Sci Rep 9(1):1–17

    Article  CAS  Google Scholar 

  • Buschart A, Gremmer K, El-Mowafy M, Van den Heuvel J, Mueller PP, Bilitewski U (2012) A novel functional assay for fungal histidine kinases group III reveals the role of HAMP domains for fungicide sensitivity. J Biotechnol 157:268–277

    Article  PubMed  CAS  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chun CD, Liu OW, Madhani HD (2007) A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog 3(2):22

    Article  CAS  Google Scholar 

  • Defosse TD, Sharma A, Mondal AK, de Bernonville TD, Latgé JP, Calderone R, Courdavault V, Clastre M, Papon N (2015) Hybrid histidine kinases in pathogenic fungi. Mol Microbiol 95(6):914–924

    Article  PubMed  CAS  Google Scholar 

  • Dongo A, Bataille-Simoneau N, Campion C, Guillemette T, Hamon B, Iacomi-Vasilescu B (2009) The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Appl Environ Microbiol 75:127–134

    Article  PubMed  CAS  Google Scholar 

  • Dunin-Horkawicz S, Lupas AN (2010) Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J Mol Biol 397:1156–1174

    Article  PubMed  CAS  Google Scholar 

  • El-Mowafy M, Bahgat MM, Bilitewski U (2013) Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants. BMC Microbiol 13(1):209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furukawa K, Randhawa K, Kaur H, Mondal AK, Hohmann S (2012) Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Lett 586:2417–2422

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS carrier DNA/PEGmethod. Methods Mol Biol 313:107–120

    PubMed  CAS  Google Scholar 

  • Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S (2013) NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS ONE 8:e80881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hérivaux A, So YS, Gastebois A, Latgé JP, Bouchara JP, Bahn YS, Papon N (2016) Major sensing proteins in pathogenic fungi: the hybrid histidine kinase family. PLoS Pathog 12(7):1005683

    Article  CAS  Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet 61(3):373–382

    Article  PubMed  CAS  Google Scholar 

  • Jacob S, Foster AJ, Yemelin A, Thines E (2014) Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaportheoryzae. Microbiologyopen 3:668–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur H, Singh S, Rathore YS, Sharma A, Furukawa K, Hohmann S, Mondal AK (2014) Differential role of HAMP-like linkers in regulating the functionality of the group III histidine kinase DhNik1p. J Biol Chem 289:20245–20258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kilani J, Fillinger S (2016) Phenylpyrroles: 30 years, two molecules and (nearly) no resistance. Front Microbiol 7:2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T (2004) Fungicide activity through activation of a fungal signalling pathway. Mol Microbiol 53(6):1785–1796

    Article  PubMed  CAS  Google Scholar 

  • Lawry SM, Tebbets B, Kean I, Stewart D, Hetelle J, Klein BS (2017) Fludioxonil induces Drk1, a fungal group III hybrid histidine kinase, to dephosphorylate its downstream target, Ypd1. Antimicrob Agents Chemother 61(2):e01414-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W, Leroux P, Fillinger S (2008) The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide-and phenylpyrrole-resistance. Fungal Genet Biol 45(7):1062–1074

    Article  PubMed  CAS  Google Scholar 

  • Luo YY, Yang JK, Zhu ML, Liu CJ, Li HY, Lu ZB, Pan WZ, Zhang ZH, Bi W, Zhang KQ (2012) The group III two-component histidine kinase AlHK1 is involved in fungicides resistance, osmosensitivity, spore production and impacts negatively pathogenicity in Alternaria longipes. Curr Microbiol 64:449–456

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  PubMed  CAS  Google Scholar 

  • Martinez M, Duclert-Savatier N, Betton JM, Alzari PM, Nilges M, Malliavin TE (2016) Modification in hydrophobic packing of HAMP domain induces a destabilization of the auto-phosphorylation site in the histidine kinase CpxA. Biopolymers 105(10):670-82

  • McCormick A, Jacobsen ID, Broniszewska M, Beck J, Heesemann J, Ebel F (2012) The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus. PLoS ONE 7:e38262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meena N, Kaur H, Mondal AK (2010) Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. J Biol Chem 285:12121–12132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller TK, Renault S, Selitrennikoff CP (2002) Molecular dissection of alleles of the osmotic-1 locus of Neurospora crassa. Fungal Genet Biol 35(2):147–155

    Article  PubMed  CAS  Google Scholar 

  • Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T (2005a) A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet Biol 42:200–212

    Article  PubMed  CAS  Google Scholar 

  • Motoyama T, Ohira T, Kadokura K, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T (2005b) An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr Genet 47(5):298–306. https://doi.org/10.1007/s00294-005-0572-6

    Article  PubMed  CAS  Google Scholar 

  • Motoyama T, Ochiai N, Morita M, Iida Y, Usami R, Kudo T (2008) Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Curr Genet 54(4):185–195. https://doi.org/10.1007/s00294-008-0211-0

    Article  PubMed  CAS  Google Scholar 

  • Nemecek JC, Wüthrich M, Klein BS (2006) Global control of dimorphism and virulence in fungi. Science 312:583–588

    Article  PubMed  CAS  Google Scholar 

  • Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2001) Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag Sci 57:437–442

    Article  PubMed  CAS  Google Scholar 

  • Oshima M, Banno S, Okada K, Takeuchi T, Kimura M, Ichiishi A, Yamaguchi I, Fujimura M (2006) Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide resistant field isolates of Botrytis cinerea. J Gen Plant Pathol 72:65–73

    Article  CAS  Google Scholar 

  • Parkinson JS (2010) Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. Annu Rev Microbiol 64:101–122. https://doi.org/10.1146/annurev.micro.112408.134215

    Article  PubMed  CAS  Google Scholar 

  • Randhawa A, Chawla S, Mondal AK (2016) Functional dissection of HAMP domains in NIK1 ortholog from pathogenic yeast Candida lusitaniae. Gene 577(2):251–257

    Article  PubMed  CAS  Google Scholar 

  • Randhawa A, Kundu D, Sharma A, Prasad R, Mondal AK (2019) Overexpression of the CORVET complex alleviates the fungicidal effects of fludioxonil on the yeast Saccharomyces cerevisiae expressing hybrid histidine kinase 3. J Biol Chem 294(2):461–475

    Article  PubMed  CAS  Google Scholar 

  • Randhawa A, Mondal AK (2013) The sixth HAMP domain negatively regulates the activity of the group III HHK containing seven HAMP domains. Biochem Biophys Res Commun 438:140–144

    Article  PubMed  CAS  Google Scholar 

  • Rispail N, Di Pietro A (2010) The two-component histidine kinase Fhk1 controls stress adaptation and virulence of Fusarium oxysporum. Mol Plant Pathol 11:395–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryder LS, Dagdas YF, Kershaw MJ, Venkataraman C, Madzvamuse A, Yan X, Cruz-Mireles N, Soanes DM, Oses-Ruiz M, Styles V, Sklenar J, Menke FLH, Talbot NJ (2019) A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature 574:423–427. https://doi.org/10.1038/s41586-019-1637-

    Article  PubMed  CAS  Google Scholar 

  • Spadinger A, Ebel F (2017) Molecular characterization of Aspergillus fumigatusTcsC, a characteristic type III hybrid histidine kinase of filamentous fungi harboring six HAMP domains. Int J Med Microbiol 307(4–5):200–208

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Izumitsu K (eds) (2010) Two-component signaling system in filamentous fungi and the mode of action of dicarboximide and phenylpyrrole fungicides. Fungicides Odile Carisse. InTech, London (ISBN: 978-953-307-266-1)

    Google Scholar 

  • Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pêcheur P, Kunduru AR, Leroux P, Legendre L (2006) A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant-Microbe Interact 19:1042–1050

    Article  PubMed  CAS  Google Scholar 

  • Yoshimi A, Kojima K, Takano Y, Tanaka C (2005) Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryot Cell 4:1820–1828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Liu K, Zhang X, Song W, Zhao Q, Dong Y, Guo M, Zheng X, Zhang Z (2010) A two-component histidine kinase, MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus Magnaporthe oryzae. Curr Genet 56(6):517–528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Plasmid pYES-HIK1 is a kind gift from Takayuki Motoyama, RIKEN (The Institute of Physical and Chemical Research), Wako City, Japan. Work is supported by grant no CRG/2020/002107 from Department of Science and Technology (IN) to AKM. HK, SPS, AY and YM are recipients of CSIR-UGC Senior research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

HR—investigation; formal analysis; writing—original draft; SPS—validation; investigation; visualization; writing—review and editing. AY—validation; visualization; writing—review and editing. YM—validation; visualization; writing—review and editing. AKM—conceptualization; supervision; project administration; funding acquisition; writing—review and editing.

Corresponding author

Correspondence to Alok K. Mondal.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

438_2021_1809_MOESM1_ESM.tif

Supplementary file1 Growth pattern of S. cerevisiae strain AMY1000 transformed with Hik1 or different mutant in the presence doxycycline or fludioxonil. Tenfold serial dilutions of overnight cultures were spotted on minimal SD plates without leucine, with doxycycline (10 µg/ml) or with fludioxonil (50 µg/ml) and plates were incubated at 28 ºC for 3 days. Growth on doxycycline plate indicates that Hik1 or its mutant complements Sln1 function in S. cerevisiae. Absence of growth in fludioxonil plate indicates HIK1 or its mutant confers fludioxonil sensitivity to host. A, B—Individual and serially deleted HAMP domain mutants. C, D—HAMP-like linker domain mutants

(TIF 2260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Sasan, S.P., Yadav, A. et al. Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae. Mol Genet Genomics 296, 1135–1145 (2021). https://doi.org/10.1007/s00438-021-01809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01809-7

Keywords

Navigation