Abstract
Repetitive DNAs comprise large portion of eukaryote genomes. In genome projects, the assembly of repetitive DNAs is challenging due to the similarity between repeats, which generate ambiguities for alignment. Fluorescence in situ hybridization (FISH) is a powerful technique for the physical mapping of various sequences on chromosomes. This technique is thus very helpful in chromosome-based genome assemblies, providing information on the fine architecture of genomes and their evolution. However, various protocols are currently used for FISH mapping, most of which are relatively laborious and expensive, or work properly only with a specific type of probes or sequences, and there is a need for a universal and affordable FISH protocol. Here we tested a FISH protocol for mapping of different DNA repeats, such as multigene families (rDNAs, U snDNAs, histone genes), satellite DNAs, microsatellites, transposable elements, DOP-PCR products, and telomeric motif (TTAGG)n, on the chromosomes of various insects and other arthropods. Different cell types and stages obtained from diverse tissues were used. The FISH procedure proved high quality and reliable results in all experiments performed. We obtained data on the chromosomal distribution of DNA repeats in representatives of insects and other arthropods. Thus, our results allow us to conclude that the protocol is universal and requires only time adjustment for chromosome/DNA denaturation. The use of this FISH protocol will facilitate studies focused on understanding the evolution and role of repetitive DNA in arthropod genomes.
Similar content being viewed by others
References
Almeida BRR, Milhomem-Paixão SSR, Noronha RCR, Nagamachi CY, Costa MJRD, Pardal PPO, Coelho JS, Pieczarka JC (2017) Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae). BMC Genet 18:35. https://doi.org/10.1186/s12863-017-0494-6
Anjos A, Ruiz-Ruano FJ, Camacho JP, Loreto V, Cabrero J, de Souza MJ, Cabral-de-Mello DC (2015) U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization. Heredity 114:207–219. https://doi.org/10.1038/hdy.2014.87
Bardella VB, Fernandes JA, Cabral-de-Mello DC (2016) Chromosomal evolutionary dynamics of four multigene families in Coreidae and Pentatomidae (Heteroptera) true bugs. Mol Genet Genom 291:1919–1925. https://doi.org/10.1007/s00438-016-1229-5
Bardella VB, Milani D, Cabral-de-Mello DC (2020) Analysis of Holhymenia histrio genome provides insight into the satDNA evolution in an insect with holocentric chromosomes. Chromosome Res 28:369–380. https://doi.org/10.1007/s10577-020-09642-1
Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524. https://doi.org/10.1038/443521a
Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420. https://doi.org/10.1007/s10577-015-9499-z
Cabral-de-Mello DC (2015) Beetles (Coleoptera). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 171–217
Cabral-de-Mello DC, Moura RC, Martins C (2011) Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cytogenet Genome Res 134:127–135. https://doi.org/10.1159/000326803
Camacho JPM, Cabrero J, López-León MD, Cabral-de-Mello DC, Ruiz-Ruano FJ (2015) Grasshoppers (Orthoptera). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 381–438
Carabajal Paladino LZ, Nguyen P, Šíchová J, Marec F (2014) Mapping of single-copy genes by TSA-FISH in the codling moth Cydia pomonella. BMC Genet 15:S15. https://doi.org/10.1186/1471-2156-15-S2-S15
Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220. https://doi.org/10.1038/371215a0
Chirino MG, Papeschi AG, Bressa MJ (2013) The significance of cytogenetics for the study of karyotype evolution and taxonomy of water bugs (Heteroptera, Belostomatidae) native to Argentina. Comp Cytogenet 7:111–129. https://doi.org/10.3897/CompCytogen.v7i2.4462
Colihueque N, Gajardo G (1996) Chromosomal analysis in Artemia populations from South America. Cytobios 88:141–148
Dolejš P, Kořínková T, Musilová J, Opatová V, Kubcová L, Buchar J, Král J (2011) Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae). Eur J Entomol 108:1–16. https://doi.org/10.14411/eje.2011.001
Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE (2016) Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Res 44:D793–D800. https://doi.org/10.1093/nar/gkv1208
Fominaya A, Loarce Y, González JM, Ferrer E (2016) Tyramide signal amplification: Fluorescence in situ hybridization for identifying homoeologous chromosomes. Methods Mol Biol 1429:35–48. https://doi.org/10.1007/978-1-4939-3622-9_4
Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes 8:E230. https://doi.org/10.3390/genes8090230
Green JE, Dalíková M, Sahara K, Marec F, Akam M (2016) XX/XY system of sex determination in the geophilomorph centipede Strigamia maritima. PLoS ONE 11:e0150292. https://doi.org/10.1371/journal.pone.0150292
Gulia-Nuss M, Meyer JM, Hill CA (2015) Ticks (Ixodida). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 439–470
Hobza R, Cegan R, Jesionek W, Kejnovsky E, Vyskot B, Kubat Z (2017) Impact of repetitive elements on the Y chromosome formation in plants. Genes 8:302. https://doi.org/10.3390/genes8110302
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN (2014) Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 71:467–478. https://doi.org/10.1007/s00018-013-1437-7
i5K Consortium (2013) The i5K Initiative: Advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered 104:595–600. https://doi.org/10.1093/jhered/est050
Imai HT, Crozier RH, Taylor RW (1977) Karyotype evolution in ants. Chromosoma 59:341–393. https://doi.org/10.1007/BF00327974
Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559. https://doi.org/10.1073/pnas.0403659101
Kennison JA (2008) Dissection of larval salivary glands and polytene chromosome preparation. CSH Protoc. https://doi.org/10.1101/pdb.prot4708
Kotsarenko K, Vechtova P, Lieskovska J, Füssy Z, Cabral-de-Mello DC, Rego ROM, Alberdi P, Collins M, Bell-Sakyi L, Sterba J, Grubhoffer L (2020) Karyotype changes in long-term cultured tick cell lines. Sci Rep 10:13443. https://doi.org/10.1038/s41598-020-70330-5
Kuznetsova VG, Grozeva SM, Hartung V, Anokhin BA (2015a) First evidence for (TTAGG)n telomeric sequence and sex chromosome post-reduction in Coleorrhyncha (Insecta, Hemiptera). Comp Cytogenet 9:523–532. https://doi.org/10.3897/CompCytogen.v9i4.5609
Kuznetsova VG, Khabiev GN, Krivokhatsky VA (2015b) Chromosome numbers in antlions (Myrmeleontidae) and owlflies (Ascalaphidae) (Insecta, Neuroptera). ZooKeys 538:47–61. https://doi.org/10.3897/zookeys.538.6655
Kuznetsova VG, Maryańska-Nadachowska A, Shapoval NA, Anokhin BA, Shapoval AP (2017) Cytogenetic characterization of eight Odonata species originating from the Curonian Spit (the Baltic Sea, Russia) using C-banding and FISH with 18S rDNA and telomeric (TTAGG)n probes. Cytogenet Genome Res 153:147–157. https://doi.org/10.1159/000486088
Larracuente AM, Feerre PM (2015) Simple method for Fluorescence DNA In Situ Hybridization to squashed chromosomes. J Vis Exp 95:e52288. https://doi.org/10.3791/52288
Liehr T, Buleu O, Karamysheva T, Bugrov A, Rubtsov N (2017) New insights into Phasmatodea chromosomes. Genes 8:327. https://doi.org/10.3390/genes8110327
López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA (ed) Repetitive DNA. Genome Dyn, Karger, Basel, pp 1–28
Luykx P (1983) XO:XX sex chromosomes and Robertsonian variation in the autosomes of the wood-roach Cryptocercus punctulatus (Dictyoptera: Blattaria: Cryptocercidae). Ann Entomol Soc Am 76:518–522
Mandrioli M, Manicardi GC (2015) Aphids (Hemiptera). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 327–350
Marques A, Banaei-Moghaddam AM, Klemme S, Blattner FR, Niwa K, Guerra M, Houben A (2013) B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Ann Bot 112:527–534. https://doi.org/10.1093/aob/mct121
Mason JM, Frydrychová RC, Biessmann H (2008) Drosophila telomeres: an exception providing new insights. BioEssays 30:25–37. https://doi.org/10.1002/bies.20688
Mattos VF, Carvalho LS, Cella DM, Schneider MC (2014) Location of 45S ribosomal genes in mitotic and meiotic chromosomes of buthid scorpions. Zool Sci 31:603–607. https://doi.org/10.2108/zs140005
Mazzoleni S, Rovatsos M, Schillaci O, Dumas F (2018) Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp Cytogenet 12:27–40. https://doi.org/10.3897/CompCytogen.v12i1.19381
Miao Y, Wang J-S, Hua B-Z (2018) Molecular phylogeny of the scorpionflies Panorpidae (Insecta: Mecoptera) and chromosomal evolution. Cladistics 35:385–400. https://doi.org/10.1111/cla.12357
Milani D, Palacios-Gimenez OM, Cabral-de-Mello DC (2017) The U2 snDNA is a useful marker for B chromosome detection and frequency estimation in the grasshopper Abracris flavolineata. Cytogenet Genome Res 151:36–40. https://doi.org/10.1159/000458468
Milani D, Bardella VB, Ferretti ABSM, Palacios-Gimenez OM, Melo AS, Moura RC, Loreto V, Song H, Cabral-de-Mello DC (2018) Satellite DNAs unveil clues about the ancestry and composition of B chromosomes in three grasshopper species. Genes 9:523. https://doi.org/10.3390/genes9110523
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767. https://doi.org/10.1126/science.1257570
Palacios-Gimenez OM, Dias GB, Lima LG, Kuhn GCS, Ramos E, Martins C, Cabral-de-Mello DC (2017) High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci Rep 7:6422. https://doi.org/10.1038/s41598-017-06822-8
Panfilio KA, Angelini DR (2017) By land, air, and sea: hemipteran diversity through the genomic lens. Curr Opin Insect Sci 25:106–115. https://doi.org/10.1016/j.cois.2017.12.005
Pérez-García C, Morán P, Pasantes JJ (2014) Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters. BMC Genet 15:84. https://doi.org/10.1186/1471-2156-15-84
Piccoli MCA, Bardella VB, Cabral-de-Mello DC (2018) Repetitive DNAs in Melipona scutellaris (Hymenoptera: Apidae: Meliponidae): chromosomal distribution and test of multiple heterochromatin amplification in the genus. Apidologie 49:497–504. https://doi.org/10.1007/s13592-018-0577-z
Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM (2016) High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep 6:28333. https://doi.org/10.1038/srep28333
Ruiz-Ruano FJ, Cabrero J, López-León MD, Camacho JPM (2017) Satellite DNA content illuminates the ancestry of a supernumerary (B) chromosome. Chromosoma 126:487–500. https://doi.org/10.1007/s00412-016-0611-8
Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7:449–460. https://doi.org/10.1023/A:1009297729547
Triant DA, Cinel SD, Kawahara AY (2017) Lepidoptera genomes: current knowledge, gaps and future directions. Curr Opin Insect Sci 25:99–105. https://doi.org/10.1016/j.cois.2017.12.004
Vasconcelos EV, Vasconcelos S, Ribeiro T, Benko-Iseppon AM, Brasileiro-Vidal AC (2018) Karyotype heterogeneity in Philodendron s.l. (Araceae) revealed by chromosome mapping of rDNA loci. PLoS ONE 13:e0207318. https://doi.org/10.1371/journal.pone.0207318
Webb AIR, White MJD, Contreras N, Cheney J (1978) Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. Chromosoma 67:309–339. https://doi.org/10.1007/BF00285964
Wiegmann BM, Richards S (2018) Genomes of Diptera. Curr Opin Insect Sci 25:116–124. https://doi.org/10.1016/j.cois.2018.01.007
Yoshido A, Sahara K, Yasukochi Y (2015) Silk moths (Lepidoptera). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 219–256
Zamore PD, Ma S (2011) Isolation of Drosophila melanogaster testes. J Vis Exp 13:2641. https://doi.org/10.3791/2641
Acknowledgements
We are grateful to a number of colleagues for providing samples of insects, other arthropods, and nematodes (Allison K. Anjos and Vanessa B. Bardella, Rio Claro, SP, Brazil; Rita C. Moura, Recife, PE, Brazil; Jack E. Green, Cambridge, UK; David G. Heckel and Melanie Unbehend, Jena, Germany; Jiří Král, Prague, Czech Republic; Daniela Hlávková, Dalibor Kodrík, Marie Korchová, Petr Nguyen, Vladimír Půža, Pavlína Větchová, and Magda Zrzavá, all České Budějovice, Czech Republic), determination of the sawfly Nematus ribesii (Libor Dvořák, Mariánské Lázně, Czech Republic), providing some images (Camila C. Avelino, Mara M.L.S. Pinheiro, and Octavio M. Palacios-Gimenez, all São Paulo, SP, Brazil), and performing some experiments (Vanessa B. Bardella, Mara M.L.S. Pinheiro, Octavio M. Palacios-Gimenez). We also wish to thank members of FM laboratory (Atsuo Yoshido, Magda Zrzavá, Anna Voleníková, Martina Hejníčková, and Sander Visser) for valuable suggestions on the FISH protocol. Last but not least, we thank Tatiane C. Mariguela (Rio Claro, SP, Brazil) for schematic drawings of insects in Figure S1. This study was supported by CNPq-Conselho Nacional de Pesquisa e Desenvolvimento, FAPESP-Fundação de Amparo à Pesquisa do Estado de São Paulo (BE.PQ, process number 2017/097319, Regular Research Grant, process number 2019/19069-7) and by grants 17-13713S and 20-13784S of the Czech Science Foundation given to FM.
Funding
CNPq-Conselho Nacional de Pesquisa e Desenvolvimento, FAPESP-Fundação de Amparo à Pesquisa do Estado de São Paulo (BE.PQ, process number 2017/097319, Regular Research Grant, process number 2019/19069-7 given to DCCM) and by grants 17-13713S and 20-13784S the Czech Science Foundation given to FM.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no conflict of interest.
Ethics approval
All applicable international, national, and institutional guidelines for the care and use of animals were followed.
Additional information
Communicated by Stefan Hohmann.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Cabral-de-Mello, D.C., Marec, F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol Genet Genomics 296, 513–526 (2021). https://doi.org/10.1007/s00438-021-01765-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00438-021-01765-2